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A proteogenomic analysis of cervical cancer
reveals therapeutic and biological insights

Jing Yu1,2,16, Xiuqi Gui3,16, Yunhao Zou 4,5,16, Qian Liu6,16, Zhicheng Yang 5,6,
Jusheng An1, Xuan Guo3,5, Kaihua Wang4,5, Jiaming Guo5,6, Manni Huang1,
Shuhan Zhou3,5, Jing Zuo1, Yimin Chen5,6, Lu Deng1, Guangwen Yuan1, Ning Li1,
Yan Song7, Jia Jia7, Jia Zeng1, Yuxi Zhao1, Xianming Liu8, Xiaoxian Du8,
Yansheng Liu 9, Pei Wang 10, Bing Zhang 11, Li Ding 12, Ana I. Robles 13,
Henry Rodriguez13, Hu Zhou 5,6,14 , Zhen Shao 3,5 , Lingying Wu1 &
Daming Gao 4,5,15

Although the incidence of cervical cancer (CC) has been reduced in high-
income countries due to human papillomavirus (HPV) vaccination and
screening strategies, it remains a significant public health issue that poses a
threat to women’s health in low-income countries. Here, we perform a com-
prehensive proteogenomic profiling of CC tumors obtained from 139 Chinese
women. Integrated proteogenomic analysis links genetic aberrations to
downstreampathogenesis-related pathways and reveals the landscape of HPV-
associated multi-omic changes. EP300 is found to enhance the acetylation of
FOSL2-K222, consequently accelerating themalignant proliferationofCCcells.
Proteomic stratification identifies three patient subgroups with distinct fea-
tures in prognosis, genetic alterations, immune infiltration, and post-
translational modification regulations. PRKCB is further identified as a
potential radioresponse-related biomarker of CC patients. This study provides
a valuable public resource for researchers and clinicians to delve into the
molecular basis of CC, to identify potential treatments and to ultimately
advance clinical practice.

Cervical cancer (CC) remains the fourth most common malignancy
and the fourth leading cause of cancer mortality in women1. Unlike
numerous other cancers lacking direct etiological association with
virus infection, persistent human papillomavirus (HPV) infection is the
major cause of CC, and over 90% of CC patients are associated with
HPV infection at the time of diagnosis2. Although HPV vaccination and
screening strategies have reduced the incidence of CC in high-income
countries3, CC is still a major public health problem threatening
women’s health in low-income countries4. Patients with early-stage CC
who are treated with radical surgery generally have a good prognosis.
For locally advanced CC, cisplatin-based concurrent chemor-
adiotherapy is recommended as the standard treatment5–7. However,
about 30–50% of CC patients treated with standard care of

chemoradiotherapy experienced progression or recurrencewithin five
years8–10. Some patients do not benefit optimally from radiotherapy
because of radio-resistance, and the prognosis for those with persis-
tent, recurrent, or metastatic CC is poor. Therefore, exploring poten-
tial radio-resistance biomarkers and effective interventions to improve
outcomes for locally advanced disease is pivotal. Investigating the
molecularmechanismof CCdevelopment and its HPV association, and
identifying candidate biomarkersor therapeutic targets could improve
individualized therapy for CC, which would greatly improve patient
survival and quality of life.

Previous genomic and transcriptomic studies revealed the genetic
landscape of CC as well as patient stratification based on distinct
molecular signatures11–15. The study from The Cancer Genome Atlas
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(TCGA) clustered 178 CC patients using mRNA, methylation, miRNA,
and copy number data, and identified three subtypes: (i) Keratin-low
squamous, (ii)Keratin-high squamous, and (iii)Adenocarcinoma-rich14.
The CC multi-omics research by Fan et al. focused on exploring the
functional consequences of HPV fusion transcripts on the biology and
pathophysiology16. However, the previous studies either lacked or
possessed only limited proteomic data. Consequently, a comprehen-
sive characterization of the changes in the protein landscapewithinCC
was absent. In contrast, recent research on various women’s cancer
types, including breast17,18, endometrial19,20, and ovarian cancers21,22,
conducted by the Clinical Proteomic Tumor Analysis Consortium
(CPTAC), has demonstrated the indispensable role of integrating
proteomic and post-translational modification (PTM) analyses with
genomic strategies to reveal essential biological insights into com-
plex diseases. This compelling precedent prompted our pursuit of
proteogenomic analysis to delve deeper into the molecular
mechanisms of CC, particularly in the context of HPV-induced
carcinogenesis.

In this study, we performed integrated genomic, transcriptomic,
proteomic, phosphoproteomic, and acetylproteomic analyses on
Chinese CC patients. Our proteogenomic study discovered: 1) HPV-
promoted phenotypic perturbations at multi-omics levels; 2) acetyla-
tion of FOSL2-K222 by EP300 accelerating malignant proliferation; 3)
proteomic subgroups associated with distinct clinical and biological
features; and 4) PRKCB as a potential radioresponse-related bio-
marker. The underlying data presented here serves as a valuable
resource for advancing research in various aspects of CC, including
biology, treatment strategies, and the exploration of potential
therapeutic drugs.

Results
Proteogenomic landscape of a Chinese CC cohort
To comprehensively understand themolecular characteristics of CC in
China and provide valuable biological insights to guide clinical treat-
ments, we conducted a comprehensive analysis using whole exome
sequencing (WES), RNA sequencing (RNA-seq), proteomics, phos-
phoproteomics, and acetylproteomics (Supplementary Fig. 1a). This
analysis was performed on a total of 139 treatment-naive tumor sam-
ples and 33 normal adjacent tissues (NATs) prospectively collected
from the Peking Union Medical College (PUMC). Out of 139 patients,
112 were diagnosed with squamous cell carcinoma, 19 with adeno-
carcinoma, 2 with adenosquamous carcinoma, 4 with small cell neu-
roendocrine carcinoma of the cervix (NECC), and 2 with other mixed
histology type (Supplementary Fig. 1b). Clinical parameters including
tumor grade, stage, primary treatment modality, and progression-free
survival (PFS) information were summarized in Supplementary Fig. 1c
and Supplementary Data 1a, b. The analysis flow chart of this study is
presented in Supplementary Fig. 1d.

A total of 31,047 non-silent point mutations and 1050 small
insertions-deletions were detected in the WES data of the primary
tumors of 134 CC patients (Supplementary Data 2a). The most fre-
quently mutated genes in the PUMC cohort included PIK3CA (32.8%),
KMT2C (18.7%), KMT2D (17.2%), FAT1 (13.4%), AR1D1A (11.2%), FBXW7
(11.2%), EP300 (8.2%), TP53 (8.2%), PTEN (7.5%), and ERBB3 (7.5%)
(Fig. 1a). PIK3CA was the most frequently mutated gene in CC, as pre-
viously published14,15. KMT2C and KMT2D were frequently mutated in
this cohort, and also observed across various types of cancers23–25. The
mutation rate of KRAS was higher in cervical adenocarcinoma than in
squamous cell carcinoma (25.0% vs 0%) in our cohort, consistent with
the TCGA CC study (15.6% vs 2.9%)14 (Fig. 1b). In this study, 24,595
genes were quantified by RNA-seq; Isobaric tandem mass tags (TMT)-
based proteomic analysis identified 9,600 proteins; Phosphopro-
teomic analysis identified 41,448 highly reliable phosphosites corre-
sponding to 7721 phosphoproteins and acetylproteomics detected
5749 highly reliable acetylsites corresponding to 2456 acetylproteins

(Supplementary Data 3a-d). Besides, data-independent acquisition
(DIA)-based proteomics identified 11,904 proteins and exhibited good
consistency with TMT-proteomics data (Supplementary Data 3e, Sup-
plementary Fig. 2a). Principal-component analysis (PCA) clearly dis-
criminated tumors and NATs based on both TMT and DIA proteomics
data, and no obvious batch effects were observed (Supplementary
Fig. 2b). In addition, high data reproducibility and technical quality
were demonstrated across the entire proteomics analysis (Supple-
mentary Fig. 2c, d).

For 6089 genes whose mRNA and protein abundance were both
measured across 132 CC samples, we observed an overall positive
mRNA-protein correlation (81.7% showed significantly positive corre-
lation at Benjamini-Hochberg (BH) adjusted P <0.05) with a median
Spearman’s correlation coefficient of 0.40 (Supplementary Fig. 2e),
which is similar to previous studies investigating ovarian cancer
(median r = 0.45)21 and clear cell renal cell carcinoma (median
r = 0.44)26. Previous studies have revealed the intricate cellular het-
erogeneity of CC tissues27–29. We leveraged transcriptomic data to
estimate the immune and stromal infiltration scores30 (Supplementary
Data 1a). The immune infiltration scores were significantly higher in
squamous cell carcinoma than in adenocarcinoma (P = 2.2E-03, Sup-
plementary Fig. 2f), consistent with the better prognosis observed in
squamous cell carcinoma31,32.

Multi-omics analysis of somatic copy number alternations
For 134 CC samples, somatic copy number alternations (SCNAs) were
derived based on WES data. Overall, genome-wide focal alterations
showed the most frequent gains in chromosomes 1q, 3q, 5p and focal
losses in chromosome 2q, 3p, 11q, 13q (Supplementary Fig. 3a), con-
sistent with previous reports12,14,15. In addition to amplification of genes
CD274, PDCD1LG2, TP63 and PIK3CA reported in previous studies, we
observed recurrent amplification events at PIK3CB (3q22.3, 55.97%),
CDK4 (12q14.1, 37.3%), AKT1 (14q32.22, 39.55%), AKT2 (19q13.2, 57.46%)
(Supplementary Fig. 3b, Supplementary Data 4a), and also identified
deletions of tumor suppressors such as LATS1 (6q25.1, 15.67%),AR1D1B
(6q25.3, 14.93%), BRCA2 (13q13.1, 23.88%) and RB1 (13q14.2, 23.88%)
(|Log2 (Tumor/Blood)| >0.3) (Supplementary Fig. 3c, Supplementary
Data 4b).

The gains and losses of gene copies often cis or trans-regulate
mRNA, protein, and phosphoprotein abundance, as shown by the
diagonal and vertical patterns in Fig. 2a. The cis and trans association
among copy number alternation (CNA)-protein (TMT and DIA) and
CNA-phosphoprotein were more attenuated than that of CNA-RNA
(Fig. 2a, SupplementaryFig. 3d, e). Furthermore, basedon theTMTand
DIA proteomic datasets, 1358 common attenuated proteins were
identified, which were mainly enriched in biological processes such as
mRNA processing, mRNA splicing, and ribosome biogenesis (Supple-
mentary Fig. 3f–h). Thus, PTM may play a key role in determining
protein half-lives, resulting in decreased correlation between gene
dosage and protein abundance33.

To identify hub CNA genes, we screened correlated CNA, mRNA,
and protein levels across tumors and concordant protein-level
changes between tumors and NATs as below. 178 genes were iden-
tified as copy number gain genes with cis effects (CNG-Cis genes, see
Methods) and were enriched in proteasome, RNA transport, ribo-
flavin metabolism, spliceosome, DNA replication and N-Glycan bio-
synthesis (Fig. 2b, Supplementary Data 5a), highlighting the
functional impact of CNA on tumor proliferation and progression. It
is noteworthy that tumors with positive lymph node exhibited higher
average CNG-Cis protein abundances than tumors with negative
lymph node (Fig. 2c). Meanwhile, 28 copy number loss genes with cis
effects (CNL-Cis genes, see Methods) were identified and were
involved in cell adhesion molecules and valine, leucine and iso-
leucine degradation pathways (Fig. 2d, Supplementary Data 5b). The
average protein expression level of CNL-Cis genes was inversely
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correlated with tumor size (Fig. 2e, Supplementary Fig. 3j). Addi-
tionally, tumors with positive lymph node displayed significantly
lower CNL-Cis protein abundance than tumors with negative lymph
node (Fig. 2f). Among the CNG-Cis genes, 50 (28.1%) were located on
chromosome 3q, while 16 (57.1%) of the CNL-Cis genes were located
on chromosome 11q (Supplementary Fig. 3i). Meanwhile, we found
Chr3q and Chr11q25 CNAs had much more trans effects at protein
and phosphoprotein levels (Fig. 2a, Supplementary Fig. 3e). Pathway
enrichment analysis revealed that gain of Chr3q and loss of Chr11q25
demonstrated the same trans effects on up-regulated cell-cycle
pathway and down-regulated focal adhesion pathway at the
protein and phosphoprotein levels (Fig. 2g–j). Furthermore, co-
occurrence of CNG on Chr3q and CNL on Chr11q25 was observed
(Supplementary Fig. 3k). Notably, loss of Chr11q25 was associated
with bigger tumor size (Supplementary Fig. 3l) and positive lymph

node metastasis (Supplementary Fig. 3m), also likely contributing to
proliferation and metastasis of CC cells.

Landscape of HPV-associated proteogenomic changes
HPV detection and genotyping were done based on RNA-seq data34,
the HPV gene transcriptome data were shown in Supplementary
Data 6a. Most squamous cell carcinoma samples were HPV positive
(98.2%), with 77.7% being infected with HPV A9 clade; 16.7% and 33.3%
of adenocarcinoma samples were infected with A9 and A7 clade
respectively, and 44.4% of adenocarcinoma samples were HPV-
negative (Fig. 3a). Furthermore, the proportion of HPV-positive sam-
ples among all tumors was 92.6%, substantially higher than that among
NATs (42.9%) (Fig. 3a).We also found that viral genemRNA abundance
(E1/2, E5/6/7, L1/2) in tumors was significant higher compared to
NATs (Supplementary Fig. 4a), suggesting severe HPV infection was
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primarily localized within cervical lesions. In addition, tumor samples
infected with HPV A9 displayed higher immune infiltration scores
compared with those with HPV A7 (P =0.008, Fig. 3b).

Consistent with previous study that E6 and E7 could promote
malignant transformation of host cells via forming a complex35, there
was a strong positive correlation observed between the mRNA abun-
dance of E6 and E7 in tumor samples (Spearman’s correlation = 0.98,

P = 1.2E-94, Supplementary Fig. 4b). To further elucidate the relation-
ship between viral gene and proteome and tumor phenotype, we
performed a correlation analysis of E6, and discovered that proteins
positively correlated with E6 expression were significantly enriched in
the cell cycle pathway, whereas proteins negatively correlated were
associated with focal adhesion, protein processing in the endoplasmic
reticulum, and N-glycan biosynthesis (Supplementary Fig. 5a–c).
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Simultaneously, we observed upregulation in the phosphoprotein of
H2AXandWEE1 in tumorswith higher E6mRNAabundance,while their
protein expressions did not show significant alteration (Fig. 3c–e).
Previous studies have demonstrated that HPV-positive tumors
responded remarkably to the treatment of WEE1 inhibitor
Adavosertib36,37. Phosphorylation of H2AX is a signature of DNA
double-strand breaks38. The two key HPV capsid genes L1 and L2 in
tumor samples showed a high correlation (Spearman’s correlation =
0.81, P = 3.2E-34, Supplementary Fig. 4b). L1 and L2 together form the
HPV’s capsid, which is essential for the HPV’s survival, transmission,
and spread in the environment39. Proteins positively associated with L1
mRNA abundance were enriched in DNA replication, while proteins
negatively associated were involved in cell adhesion, platelet activa-
tion, Fc gamma receptor-mediated autophagy, and leukocyte trans-
endothelial migration (Supplementary Fig. 5d). The proteins most
correlated with L1 mRNA abundance were shown in Supplementary
Fig. 5e (|Spearman’s correlation | > 0.3). Interestingly, transcription
levels of L1 gene negatively correlated with immune infiltration score
and stromal score (Supplementary Fig. 5f).

The carcinogenic progression of lesions infected with HPV16 and
HPV18 is typically linked to the integration of the viral genome into the
host cell chromosome, and this process often results in the loss of E2
gene expression40–42. Additionally, we observed the mRNA abundance
of E2 and E5 exhibited a bimodal distribution in this cohort (Supple-
mentary Fig. 4b), so we clustered the tumors into two groups with
either high or low E2/E5 mRNA abundance. VRK2 and MTDH showed
higher expression in HPV_G2 tumors (Fig. 3f). VRK2 has been identified
as an unfavorable prognostic marker in liver cancer, renal cancer, and
pancreatic cancer, and MTDH is an unfavorable prognostic marker in
lung cancer, renal cancer, and pancreatic cancer (https://www.
proteinatlas.org). Additionally, increased phosphorylation of SMIM13
and VANGL1 was observed in HPV_G2 compared with HPV_G1 (Fig. 3f).
VANGL1 plays an important role in regulating the polarized cell beha-
vior in cancer development43. HPV_G2 contained a higher prevalence
of HPV A7 infection (Fig. 3f). In addition, patients in HPV_G2 were
significantly younger (Fig. 3g) and had a worse PFS (Fig. 3h) than those
in HPV_G1. Together, our data revealed the landscape of HPV-
associated proteogenomic changes and the impact of HPV on
prognosis.

Proteomic alterations associated with tumorigenesis in CC
Tumors and paired NATs revealed remarkable differences in proteins,
phosphosites, and acetylsites (SupplementaryData 7a-c). In total, 3268
(38.8%) proteins showed significantly differential expression
(BH adjusted P <0.01), with 483 proteins up-regulated and 1041 pro-
teins down-regulated formore than2-fold abundance changes (Fig. 4a,
Supplementary Fig. 6a). The up-regulated proteins were enriched in
DNA replication, mismatch repair, p53 signaling pathway, and cell

cycle pathway, while the down-regulated proteins were enriched in
pathways such as cell adhesion molecules, focal adhesion, and com-
plement and coagulation cascades (Fig. 4b). Enrichment analysis using
altered phosphosites or acetylsites associated proteins, displayed
similar results (Supplementary Fig. 6b, c). Additionally, we defined 23
proteins as CC-associated proteins that were elevated by more than
2-fold in at least 80% of all tumor-NAT pairs, and annotated its
potential clinical utility by the Human Protein Atlas (Fig. 4c). Further-
more, the elevated tumor expression of these proteins was validated
using DIA proteomic (Supplementary Fig. 6d).

Next, we compared the molecular differences between cervical
adenocarcinoma and squamous cell carcinoma, by focusing on the
molecules that exhibited increased abundance in tumors compared to
NATs at multi-omics level (Fig. 4d, Supplementary Fig. 6e, f). For
proteins, we found immune-related biological processes such as
response to type I interferon, response to interferon-beta/gamma, and
regulation of innate immune response were significantly up-regulated
in squamous cell carcinoma, while several metabolism processes were
enriched in adenocarcinoma (Fig. 4d). The expression of interferon-
induced antiviral RNA-binding protein (IFIT1/2/3), interferon reg-
ulatory factor 6 (IRF6), interferon-induced GTP-binding protein
(MX1/2), and STAT1/2wereonly significantly up-regulated in tumors of
squamous cell carcinoma (Fig. 4e). Furthermore, the expression of
immune checkpoints and MHC molecules including CD274, CD44,
CXCL10, andHLA-E/F/Gwere also up-regulated in tumors of squamous
cell carcinoma (Fig. 4f). We thus speculate that squamous cell carci-
noma has an active immune microenvironment and may be beneficial
from immune therapies.

To explore the molecular dynamics of CC tumor progression, we
performed differential protein expression analysis across different
stages (I, II, III + IV). Enrichment analysis of KEGG pathways for these
differentially expressed proteins suggested that several metabolic
pathways including pyruvatemetabolism, glycolysis/gluconeogenesis,
carbon metabolism, and galactose metabolism were dysregulated
among tumor progression (Fig. 4g). Notably, 14 proteins presented an
overall positive regulation trend during CC progression and showed
significantly up-regulated between tumors and NATs, while 9 proteins
showed opposite trend and were down-regulated in tumors (Fig. 4h).
Furthermore, TCGA CC cohort was utilized to better understand the
clinical outcome for thesemetabolism-relatedproteins, and suggested
that high transcription level, including B4GALT1, DHCR24, AGPS,
ACACA, HK2 and SLC2A1, were positively associated with poor overall
survival (OS) in CC (Fig. 4i–l and Supplementary Fig. 7a, b). It is worth
noting that, HK2 expression is well known to be positively correlated
with tumor size, pathological grade, and prognosis and served as a
carcinogenic role in CC through AKT pathway44,45. High SLC2A1
expression as an independent prognostic factor for OS may be asso-
ciated with immunomodulation in CC46–49. However, the relevance of

Fig. 2 | Effects of SCNAs. a Correlations of CNAs (x-axes) to TMT (left) and DIA
(right) protein expression (y-axes) highlight CNA cis and trans effects. Significant
positive (red) and negative (green) correlations (two-sided Spearman’s correlation,
BHadjustedP <0.01) are indicated in top panels. The proteins positively associated
with a particular CNA were presented as red bars underneath the respective panels
and those negatively associated with a particular CNA were represented by dark
green bars. b Approach schematic for identifying CNG-Cis genes. From 8035 genes
located in GISTIC focal amplification peaks, 337 were up-regulated in tumors (two-
sided Wilcoxon rank-sum test, BH adjusted P <0.05), of which 277 had mRNA
effects and 178 had protein level effects (Spearman’s correlation > 0, BH adjusted
P <0.05). c Lymph node-positive patients (n = 44) exhibited a higher level of pro-
tein expression of CNG-Cis genes compared to lymph node-negative patients
(n = 86, two-sided Student’s t test).d Flow chart for identification of CNL-Cis genes.
From2149genes located inGISTIC focal deletionpeaks, 80weredown-regulated in
tumors (two-sidedWilcoxon rank-sum test, BH adjusted P <0.05), of which 48 had
mRNA effects and 28 had protein level effects (Spearman’s correlation > 0, BH

adjusted P <0.05). e Protein abundance (TMT) of CNL-Cis genes was negatively
correlated with tumor size (two-sided Pearson’s correlation). f Lymph node-
positive patients (n = 44) displayed lower protein expression levels of CNL-Cis
genes than lymph node-negative patients (n = 86; two-sided Student’s t test).
g KEGG pathway enrichment analysis of proteins with positive (n = 85) or negative
(n = 64) CNA-protein correlations in chromosome 3q (one-sided Fisher’s exact test,
BH adjusted P). hHeatmaps of CNG of chromosomes 3q and the protein/phospho-
protein abundance of cell cycle and focal adhesion related proteins. i KEGG path-
way enrichment analysis of proteins with positive (n = 197) or negative (n = 178)
CNA-protein correlations in chromosome 11q25 (one-sided Fisher’s exact test, BH
adjusted P). j Heatmap of CNL of chromosomes 11q25 and the protein/phospho-
protein abundanceof cell cycle and focal adhesion relatedproteins. Data in (c, f) are
shown using boxplots. Boxplots show the median (central line), the 25–75% IQR
(box limits), and the ± 1.5 × IQR (whiskers). Source data are provided as a Source
Data file.
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Fig. 3 | HPV-associated proteogenomic landscape and patient subgrouping
based on HPV E2/E5 mRNA level. a The landscape of HPV infection types in
Chinese CC cohort, with sample counts displayed. b Boxplot showing the com-
parison of immune score amongdifferent types ofHPV clade (A9, n = 89; A7, n = 30,
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Student’s t test, BH adjusted P). g Age differences between patients in two HPV
subgroups (HPV_G1, n = 56; HPV_G2, n = 66, two-sided Student’s t test, BH adjusted
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provided as a Source Data file.
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B4GALT1, DHCR24, AGPS and ACACA in CC has not reported in pre-
vious studies. In addition to correlation with CC stage, we found that
the expression of the above four proteins was higher in patients with
positive lymphnodes (Supplementary Fig. 7c-f). To further validate the
driving role of these genes in CC, we performed CCK-8 and colony
formation experiments. These results suggested that knockdown of
B4GALT1, DHCR24, AGPS and ACACA by siRNAs significantly

decreased cell proliferation and colony formation capacity of the SiHa
cells, further indicating their oncogenic roles in CC progression
(Supplementary Fig. 7g-j).

Aberrate protein acetylation regulates CC progression
To date, very few attempts have been made to systematically
describe and make use of the acetylome regulation in CC. In this
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Fig. 4 | Proteomic alterations associated with CC tumorigenesis. a Volcano plot
depicting differentially expressed proteins between paired (n = 30) tumors and
NATs (two-sided Student’s t test, BH adjusted). b Representative KEGG pathway
terms for 2-fold upregulated and downregulated proteins. c Boxplot showing Log2
FC between paired (n = 30) tumors and NATs for CC-associated proteins annotated
with potential clinical utilities by the Human Protein Atlas (two-sided Student’s t
test, BH adjusted P <0.01). d Scatterplot of significant enriched GO biological
processes terms in cervical adenocarcinoma and squamous cell carcinoma based
on differentially expressed proteins between their tumors and NATs. eHeatmap of
the relative abundance of response to type I interferon-related proteins that were
significantly upregulated between cervical squamous cell carcinoma and adeno-
carcinoma (two-sided Student’s t test). f Boxplots showing the expression of
immune checkpoints and MHCmolecules at protein level in NATs (n = 33), tumors

fromcervical adenocarcinoma (n= 19) and squamous cell carcinoma (n= 109) (two-
sided Student’s t test). g Enriched KEGG pathways for proteins that were differ-
entially expressed among different stage. h Summary of metabolism-related pro-
teins thatweredifferentially expressed among stage andbetween tumors andNATs
(two-sided Student’s t test). i–l Boxplot showing comparison of protein expression
among NATs and tumors fromdifferent stage of B4GALT1 (i), DHCR24 (j), AGPS (k)
and ACACA (l) (one-way ANOVA test). Kaplan-Meier curves for OS based onmRNA
abundanceofB4GALT1, DHCR24,AGPS, andACACA fromTCGACCcohort (n = 291,
two-sided log-rank test). Patients were stratified by the optimal cutpoint using
maximally selected rank statistics (maxstat) on mRNA abundance. Boxplots in
(c, f and i–l) show the median (central line), the 25–75% IQR (box limits), and the
± 1.5 × IQR (whiskers). Source data are provided as a Source Data file.
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study, we performed differential analysis of lysine acetyltransferases
(KATs), bromodomain-containing proteins (BRDs), and histones with
protein and acetylation abundances. Compared to NATs, the acet-
ylation of these proteins was dramatically up-regulated in tumors
relative to its protein abundance (Fig. 5a). Notably, we found that
EP300 had considerable K1542, K1546, K1549 and K1590 hyper-
acetylation in its histone acetyltransferase domain (HAT)50 (Fig. 5a).
Among them, K1549, a key autoacetylation site in the activation loop
that may activate EP300 activity was significantly up-regulated in
tumors51.

We then examined the potential impact EP300 activity by mea-
suring the acetylation of EP300 itself and performed correlation ana-
lysis with our acetylproteomics data. Consequently, high acetylation
levels of EP300 were associated with high acetylation of FOSL2
(Fig. 5b), a transcription factor that belongs to the AP-1 family and was
reported to be involved in cell proliferation and differentiation52.
However, the acetylation or function of FOSL2 in CC has not been
studied. Interestingly, we found a significant upregulation of FOSL2-
K222 acetylation but not its protein abundance (Fig. 5c). Representa-
tive spectra of the acetylated peptides of FOSL2-K222 and EP300 were
shown in Supplementary Fig. 8a-i.

To further explore the connection between EP300 and FOSL2-
K222 in CC, we conducted a comprehensive set of experiments. First,
co-transfection of EP300, but not KAT2B, KAT5 or KAT2A, promoted
FOSL2 acetylation (Fig. 5d). The elevation of FOSL2-K222 acetylation
upon EP300 co-transfection was further confirmed by mass spec-
trometry (MS) analysis (Supplementary Fig. 8j, k). Compared with
FOSL2-WT (wild type), when the FOSL2-K222R was mutated (acet-
ylation-deficient), the acetylation level of FOSL2 caused by co-
transfection with EP300 was significantly reduced (Fig. 5e), sug-
gesting that K222 was a major acetylation site of FOSL2 by EP300.
FOSL2 has been implicated as an onco-protein in several cancers,
including lung cancer53, breast cancer54 and hepatocellular
carcinoma55, and WNT5A has been shown as a transcription target
gene of FOSL254. To explore the function of FOSL2-K222 acetylation
in CC, we performed real-time quantitative RT-PCR (qRT-PCR) to
validate the FOSL2-WNT5A regulation in SiHa cells (Fig. 5f). We
established SiHa cells stably expressing FLAG-tagged FOSL2-WT,
FOSL2-K222R and FOSL2-K222Q, respectively (Fig. 5g). Interestingly,
we found the acetylation mimetic FOSL2-K222Q mutant was more
potent than FOSL2-WT in elevating the transcription of WNT5A
(Fig. 5h). Furthermore, compared with FOSL2-WT and FOSL2-K222R,
cells expressing FOSL2-K222Q showedmore potent proliferation rate
(Fig. 5i), and formed the largest tumors in xenograft tumorigenesis
assay (Fig. 5j–l), implying a strong tumor-promoting effect of FOSL2-

K222 acetylation. Therefore, these results together indicated that
EP300 promoted CC cell proliferation at least impartially via FOSL2-
K222 acetylation (Supplementary Fig. 8l).

Proteomic subgroups with distinct biological and clinical
features
We performed unsupervised consensus clustering based on TMT
proteomic data (see Methods), resulting in three proteomic sub-
groups (Fig. 6a, Supplementary Data 8a). Focusing further on radical
radiotherapy patients with PFS information (see Methods, n = 62), a
significant difference in PFS was observed among the three pro-
teomic subgroups. Patients in Subgroup 3 exhibited the best PFS,
even when further divided by known prognostic clinicopathological
variables such as stage, lymph node status, grade, and histology
type (Fig. 6b, Supplementary Fig. 9a-d). DIA-based proteomic and
TMT-based phosphoproteomic/acetylproteomic data were also
used to cluster CC patients into three subgroups respectively,
consistent with the TMT proteomic subgroups, demonstrating the
reliability and robustness of proteomic subgrouping (Supplemen-
tary Fig. 9e-h). Transcriptome-based subgroups showed lower con-
cordance with TMT proteomic subgroups, and their PFS differences
were less pronounced than those based on proteomic profiling
(Supplementary Fig. 9i), highlighting the superiority of proteomic
subgrouping.

We found a higher prevalence of adenocarcinoma and HPV-A7
infection, along with a lower incidence of abnormal SCC level in
Subgroup 1. Subgroup 2 showed the highest rates of 11q25 deletion
and 3q29 amplification (Fig. 6a, Supplementary Fig. 9j). Supervised
differential expression analysis revealed subgroup-specific proteins.
In Subgroup 1, proteins linked to keratinocyte differentiation and
KRT family KRT4, KRT5, KRT6A, KRT6B), as well as S100A family
members (S100A7, S100A8, S100A9) were down-regulated (Supple-
mentary Fig. 9k), suggesting that Subgroup 1 may be associated with
previously reported keratin-low cluster14. In Subgroup 2, 395 proteins
were up-regulated and enriched in DNA replication (MCM family),
indicating proliferative characteristics for these tumors. In Subgroup
3, 381 proteins were up-regulated and enriched in complement and
coagulation cascades, and neutrophil extracellular trap formation,
indicating the inflammatory status of Subgroup 356,57. Pathway
enrichment analysis also revealed that protein abundance in Sub-
group 1 higher than in Subgroups 2 and 3 were enriched in ECM-
receptor interaction, regulation of actin cytoskeleton, and amino
sugar and nucleotide sugar metabolism pathways; Proteins up-
regulated in Subgroup 1 and 2, were associated with ribosome, sug-
gesting over-activated ribosome biogenesis58,59 of CC tumors in these

Fig. 5 | Aberrate protein acetylation regulates CC progression. a Heatmap
illustrating the protein and acetylation abundance of KATs, BRDs, and histones
betweenpaired (n = 30) tumors andNATs (two-sided Student’s t test).b Scatterplot
showing Spearman’s correlation of FOSL2 acetylation level (x-axis) and EP300
acetylation level (y-axis) (two-sided Spearman’s correlation). c Boxplots showing
comparison of protein or K222 acetylsite expression of FOSL2 between paired
(n = 30) tumors and NATs (two-sided Student’s t test). Boxplots show the median
(central line), the 25–75% IQR (box limits), and the ± 1.5 × IQR (whiskers). d EP300
acetylated FOSL2. Flag-FOSL2 expression vectorwas co-transfected separately with
expression vectors containing a variety of acetyltransferases into HEK293T cells.
WCL and immunoprecipitates were detected by immunoblot with indicated anti-
bodies. Empty Vector (EV) was used as a negative control. The experiments were
repeated at least three times. e Mutation of K222 significantly decreased FOSL2
acetylation by EP300. HEK293T cells were co-transfected with indicated plasmids.
Cell lysates were harvested for IP and immunoblotting. The experiments were
repeated at least three times. f Relative mRNA level of WNT5A and FOSL2 in SiHa
cells after FOSL2 siRNA transfection. Data are represented as mean ± SEM (n= 3,
one-way ANOVA test). WNT5A: ⋆⋆⋆P = 7.3E-05 (NC and siFOSL2-1), ⋆⋆⋆P = 4.3E-04 (NC
and siFOSL2-2). FOSL2: ⋆⋆⋆P = 1.3E-06 (NC and siFOSL2-1), ⋆⋆⋆P = 1.1E-04 (NC and

siFOSL2-2). g SiHa cells ectopically expressing FLAG-tagged FOSL2-WT, FOSL2-
K222R and FOSL2-K222Q mutants were generated and confirmed by immunoblot.
The experiments were repeated at least three times. h Relative mRNA level of
WNT5A was determined by qRT-PCR in the indicated SiHa cells. Data are repre-
sented as mean ± SEM (n= 3, two-sided Student’s t test). ⋆⋆P = 2.9E-03 (EV andWT),
⋆⋆P = 4.0E-03 (WT and K222Q), ⋆⋆P = 1.1E-03 (WT and K222R), ⋆⋆⋆P = 2.3E-05 (K222Q
and K222R). i Proliferation of indicated SiHa cells was measured. Data are repre-
sented asmean± SEM (n= 3, two-sided Student’s t test). ⋆⋆⋆P = 7.5E-06 (EV andWT),
⋆⋆⋆P = 4.5E-06 (WT and K222Q), ⋆⋆⋆P = 1.1E-05 (WT and K222R), ⋆⋆⋆P = 1.6E-06 (K222Q
and K222R). jXenograft tumor pictures of nudemice in different groups. Scale bar,
1 cm. k Tumor growth curves of indicated SiHa cells subcutaneously injected into
nude mice. Data are represented as mean ± SEM (n= 8 mice per group, two-sided
Student’s t test). ⋆⋆⋆P = 9.2E-05 (EV and WT), ⋆⋆⋆P = 1.7E-04 (WT and K222Q),
⋆⋆⋆P = 3.4E-06 (WT andK222R), ⋆⋆⋆P = 6.4E-08 (K222Q and K222R). lTumorweight of
nudemice in different groups. Data are represented asmean ± SEM (n= 8 mice per
group, two-sided Student’s t test). ⋆⋆⋆P = 1.7E-04 (EV andWT), ⋆⋆⋆P = 5.6E-06 (WT and
K222Q), ⋆⋆⋆P = 1.3E-05 (WT and K222R), ⋆⋆⋆P = 4.6E-08 (K222Q and K222R). Source
data are provided as a Source Data file.
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two subgroups (Fig. 6a, Supplementary Data 9a). The subgroup-
related signatures from DIA-based proteomic data further corrobo-
rated the findings (Supplementary Fig. 9l, Supplementary Data 9b).
Additionally, Subgroup 3 showed the highest immune infiltration
scores, followed by Subgroup 2 and then Subgroup 1 (Fig. 6c). This
could further explain the highest response rate to radiotherapy in
Subgroup 3 patients. While patients in Subgroup 1 have smaller

tumors, their poorer PFS can be attributed to their significantly lower
immune infiltration scores (Fig. 6d). Further comparison of the
landscape of cellular heterogeneity revealed that Subgroup 1
patients exhibited the highest proportion of stromal cells and less NK
and γδ T and DC cells, Subgroup 3 patients showed significantly
higher proportions of monocytes and neutrophils (Fig. 6e), indicat-
ing Subgroup 3 patients might benefit from immunotherapy.
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To investigate the phosphoproteomic characteristics of CC
subgroups, Unsupervised clustering was performed on the differ-
entially expressed phosphosites, uncovering four phosphorylation
modules corresponding to the four protein modules (Fig. 6f). Kinase-
Substrate Enrichment Analysis (KSEA) was applied to further identify
subgroup-specific kinases (Fig. 6g). PRKACA, PRKACB, PRKAA1, and
PRKAA2 were identified as the Subgroup 1-specific kinases; CDK1,
CDK2, EIF2AK2, MAPKAPK5 and TTK were identified as the Subgroup
2-specific kinases, associated with poor prognosis. PRKCB and
PRKCD were identified as the Subgroup 3-specific kinases. PRKCB is
involved in B cell activation, and apoptosis induction, and was con-
sidered as a tumor suppressor in colon cancer60. Overexpression of
PRKCD in SiHa cells enhances the radiation sensitivity, while silen-
cing of PRKCD expression in ME180 cells by siRNA decreases the
radiation sensitivity61. In TMT and DIA proteomic datasets, protein
abundance of these subgroup-specific kinases showed similar
expression patterns with phosphorylation, further demonstrating
the strong association between phosphorylation function and pro-
tein expression (Fig. 6h).

Identification and validation of radioresponse-related bio-
markers and risk-scoring model
By combining PFS data with protein expression in radical radiotherapy
patients, we identified 92 radioresponse-related biomarkers (see
Methods), including 37 favorable and 55 unfavorable candidates
(Supplementary Fig. 10a). Then a risk scoring model was developed
based on these biomarkers (see Methods). 62 radical radiotherapy
patients were then divided into high-risk and low-risk groups based on
the median risk score. Both TMT and DIA proteomic results showed
that patients in the high-risk group had worse PFS than the low-risk
group (Supplementary Fig. 10b, c). The prognostic predictive power of
the risk scoring model was further validated in the TCGA CC cohort
(Supplementary Fig. 10d).

It is noteworthy that the Subgroup 3-specific kinase PRKCB
(Fig. 6g), identified as one of the favorable biomarkers, was down-
regulated in tumors (Fig. 7a, Supplementary Fig. 10e). Immunohis-
tochemistry (IHC) images also showed reduced PRKCB expression in
tumors compared to NATs (P = 4.4E-03, Supplementary Fig. 10i).
Additionally, PRKCB proteins levels showed no significant association
with clinical features, including different stages, lymph node metas-
tasis and grade status (Supplementary Fig. 10f–h). Tumors with high
PRKCB showed specific upregulation of Fc Gamma R-mediated pha-
gocytosis, natural killer cell-mediated cytotoxicity, T cell receptor
signaling pathway and B cell receptor signaling pathway, and down-
regulation of cell cycle, DNA replication, spliceosome, and ErbB sig-
naling pathway (Fig. 7b). Besides, radical radiotherapy patients with
high PRKCB protein (TMT/DIA) expression have a better PFS
(Fig. 7c, d). Moreover, increased PRKCB mRNA levels were positively
correlated with a better OS in the TCGA CC cohort (Fig. 7e). The IHC
results from an independent cohort of 124 patients (seeMethods)who
underwent radical radiotherapy further validated that higher PRKCB

expression is positively correlated with better radiotherapy effi-
cacy (Fig. 7f).

To explore the function of PRKCB in CC cell growth, we per-
formed CCK-8 experiments and confirmed that overexpression of
PRKCB in SiHa cells inhibited tumor cell proliferation (Fig. 7g, h).
PRKCB-overexpressing cells formed smaller tumors than the control
cells in xenograft models (Fig. 7i–k). It is worth noting that over-
expression of PRKCB significantly enhanced the killing effect of
radiation and induce G2/M cycle arrest in SiHa cells, implying that
PRKCB may enhance radiosensitivity by regulating cell cycle progres-
sion (Fig. 7l, m). Altogether, our data indicated that PRKCB could be a
promising biomarker for prediction of radiotherapy efficacy and may
play a tumor suppressor role in CC.

Discussion
Comprehensive genomic and transcriptomic analysis of CC has sig-
nificantly enhanced our comprehension of themolecular events of this
malignancy11–15,62. Unlike previous CC proteomic studies63,64, this study
presents global genomic, transcriptomic, proteomic, phosphopro-
teomic and acetylproteomic data, offering additional and more com-
prehensive insights into the clinical, biological, and therapeutic
dimensions of CC. Our integrated analysis provided a global view of
themulti-omic changes associatedwithHPV, revealed functional PTMs
on the key proteins such as FOSL2-K222 acetylation involved in CC
malignant proliferation, classified CC patients into three clinically
relevant subgroups, and identified a candidate biomarker PRKCB and
risk scoring model associated with radiotherapy response.

Previous studies reported that HPV viral protein interacted with
different epigenetic modifiers, including CREBBP, KAT2B, EP30065–67.
However, effects of viral genes on multi-omic layers in CC remain
unexplored. Our investigation was conducted to examine the
alterations in the profiles of core proteins and phosphorylated pro-
teins, with a particular emphasis on the upregulation of H2AX and
WEE1 phosphorylation in tumors expressing elevated levels of E6
mRNA. It has been demonstrated that the WEE1 inhibitor (AZD1775)
can be considered as a potential radiosensitizer in CC68. Phosphor-
ylation of the Ser 139 residue of H2AX, also known as γH2AX, is an
initial cellular response to DNA double-strand breaks69. Phosphory-
lated H2AX is enriched in CC tumors with high expression of E6,
which may be a consequence of HPV viral gene integration. We
subsequently utilized high-quality MS data to uncover significant
biological pathways and aberrant proteins that are closely associated
with viral genes at the proteomic level, which is less studied in pre-
vious studies that primarily focused on genome and transcriptome.
The integration of HPV viral genes usually results in the loss of viral
E2 gene expression and a selection for the continued expression of
E6 and E740–42. Additionally, we observed a bimodal distribution in
the mRNA levels of E2 and E5 in tumors, along with low or absent
expression of the E2 gene. Then we clustered the samples into two
groups with either high or low E2/E5 mRNA abundance. The patients
undergoing radical radiotherapy, who exhibit low mRNA abundance

Fig. 6 | Proteomic stratificationof theCCcohort and the correspondingprotein
pathways and subgroup-specific kinases. a Patient subgrouping analysis of pro-
teomic profiling identified three proteomic subgroups: Subgroup 1 (cyan, n = 53),
Subgroup 2 (blue, n = 61), Subgroup 3 (red, n = 22). Each column represented a
tumor sample, the associations of proteomic subgroups with clinical character-
istics and somatic mutations were annotated in the top panel (Chi-square test or
one-way ANOVA test, BH adjusted P). Rows in the bottom panel indicated differ-
entially expressed proteins (One-way ANOVA test, Bonferroni-adjusted P <0.05),
color of each cell showedTMTprotein abundance.bKaplan-Meier curves of PFS for
radical radiotherapypatients in each TMTproteomic subgroup (two-sided log-rank
test). The comparison of immune score (c) and tumor size (d) among TMT pro-
teomic subgroups (two-sided Student’s t test). Boxplots in c show the median

(central line), the 25–75% IQR (box limits), and the ± 1.5 × IQR (whiskers). Data in
d are represented as mean ± SEM. e Transcriptome-based deconvolution of mRNA
transcript cell signatures in tumors using Xcell (one-way ANOVA test, BH adjusted
P). f Differential phosphorylation sites among three TMT proteomic subgroups
(one-way ANOVA test, Bonferroni-adjusted P <0.05). Unsupervised clustering and
biological pathways significantly enriched are presented on the right (one-sided
Fisher’s exact test, BH adjusted P <0.05). g Circular plot depicting the active
kinases in each TMT proteomic subgroup compared to all other subgroups iden-
tified by KSEA (see Methods). The eight kinase-regulated phosphorylation sites
with the highest t-statistics were indicated by black dots. h Heatmap showing the
protein (TMT and DIA) and phosphorylation abundance of TMT subgroup-specific
kinases. Source data are provided as a Source Data file.
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of E2/E5 (HPV G_2), experience a worse PFS in comparison to patients
with high mRNA abundance of E2/E5 (HPV G_1). We further analyzed
the intrinsic motivation for the different prognosis from the per-
spective of aberrant proteins and phosphorylated proteins. These
results not only expand and enhance the understanding that the
deletion of the E2 gene promotes tumor progression, but also
innovatively reveal the impact of HPV E2/E5 gene deletion expression
on the prognosis of CC patients.

Acetyltransferases mediated protein acetylation is an essential
protein PTM that regulates various biological processes, including
oncogenesis and tumor progression. Previous studies have applied
acetylome analysis in different cancers to demonstrate the function of
acetylation protein70–72, but few of them are related to CC. Here, we
systematically described the acetylome characteristics in CC to iden-
tify the putative regulatory mechanisms. As a major acetyltransferase
and transcriptional co-activator, EP300 has been indicated in many
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cancer types and plays important roles in cancer progression and poor
prognosis71,73. There are numerous instances where EP300 over-
expression and inappropriate activation have been found to correlate
withmalignancy and drive cancer growth74–76. Notably, small molecule
inhibitors of EP300 have also shown considerable inhibition of tumor
progression in certain types of cancer77–80. C646, a selective inhibitor
of EP300, inhibited the proliferation and induced apoptosis of CC
cells81.We found that acetyltransferase EP300, consistent with a pre-
vious study in CC82, was hyperacetylation in CC tissues. Previous stu-
dies revealed that autoacetylation of the EP300HAT domain enhances
its HAT activity50,51. Therefore, hyperacetylation of EP300, especially in
its HAT domain, may cause aberrate protein acetylation change to
drive CC progression. This study discovered and confirmed that
hyperacetylated EP300 drives cell proliferation and accelerates
malignant through the FOSL2-K222 acetylation axis. These findings
may offer a theoretical foundation for targeting EP300 activity in the
treatment of CC, but more precise mechanisms need to be investi-
gated in future work.

In this study, we classified CC patients into three TMT proteomic
subgroups which provided therapeutic and biological insights. Sub-
group 2 consisted of sixty cases of squamous cell carcinoma and one
case of adenosquamous carcinoma. However, the distribution of his-
tological types of patients included in this study aligns with epide-
miological statistics and is comparable to the TCGA CC patients with
molecular subgroups14,83,84. Both TCGA CC subgroups and our pro-
teomic subgroups suggest a correlation between the histological type
and molecular classification. Protein enriched in Subgroup (such as
MCM2, MCM3, MCM4, MCM5, MCM6, MCM7) were involved in DNA
replication, indicating proliferative characteristics for these tumors.
Compared with subgroup 1 and subgroup 2, Subgroup 3 associated
with the best radiotherapy effect and showed the highest immune
infiltration scores, proportions of monocytes and neutrophils, indi-
cating that Subgroup 3 patients might benefit the most from immu-
notherapy. Previous single-cell sequencing study has revealed
radiochemotherapy-induced innate immune activation and MHC-II
upregulation in CC85, which could further explain the best radio-
therapy effect in Subgroup 3 patients. Besides, the proteomic sub-
groups may also serve as a classifier to screen immune-benefiting
populations and predict patient prognosis.

Notably, we identified the biomarker PRKCB and built a risk-
scoring model associated with the response to radiotherapy at the
proteomic level through high-throughput screening. This finding was
also confirmed in both TMT and DIA proteomic datasets. PRKCB was
down-regulated in CC tumor tissues, and high PRKCB expression was
positively correlated with better prognosis, consistent with previous
findings reported in lung adenocarcinoma86. Other studies reported
the implication of PRKCB in the regulation of mitochondrial integrity

and oxidative phosphorylation87,88. Overexpression of PRKCB in
HEK293 cells led to a significant downregulation of autophagy, as
assessed by the decrease of endogenous LC3-II levels89. PRKCB sig-
nificantly enhanced the killing effect of radiation and induced G2/M
cell cycle arrest in SiHa cells in our study. On one hand, we will eluci-
date the intricatemolecularmechanismbywhich PRKCB enhances the
sensitivity of CC to radiotherapy and its agonists. On the other hand,
we plan to carry outmulticenter cohort studies to facilitate the clinical
implementation andutilization of PRKCBand risk scoringmodels, with
the goal of enhancing the effectiveness of radiotherapy in treating
locally advanced CC.

This study bears the following limitations: 1) Only some of the
tumors had matching NATs. Besides, although the current data cor-
relates with patients’ radioresponse, however, we do not have tissue
samples after radical radiotherapy. In the future, by expanding cur-
rent primary treatment cohort and conducting a comparative ana-
lysis of samples before and after radiotherapy, it will be possible to
find clues about important molecular events related to radio-
response. 2) The prognostic analysis of our current study was based
on PFS data. And the analysis specifically focused on patients
receiving radical radiotherapy, as surgery patients generally have a
good prognosis. Extending the follow-up period in the future (up to 6
to 7 years post-treatment), we could consider including all patients
and annotating patient prognosis from an OS perspective. 3) The
proteogenomic data of tumors were collected from the same pow-
dered sample in this study. This sample preparation methodology is
good to keep the consistency when acquiring different omics data
and to improve the accuracy of cross-omics analysis results, but it
lost intra-tumor heterogeneity information in cellularity, especially
the spatial structure information. Further integration of single-cell
and spatial omics data will facilitate a more comprehensive analysis
of the characteristics of CC.

In summary, we conducted a comprehensive and integrative
proteogenomic analysis of Chinese CC, resulting in a valuable public
resource for exploring the landscape features of the CC genome,
transcriptome, and proteome. Our proteogenomic findings extended
the biology and clinical aspects of CC, and they could lead to clues as
well as opportunities to improve the treatment of CC patients.

Methods
Clinical sample of PUMC-CC cohort
Based on the sample selection parameters of TCGA CC cohort14, this
study implemented the following criteria: 1) All tumors and NATs were
collected before treatment, and were stored in liquid nitrogen within
30 min after isolation. 2) Each piece of tissue was sectioned and
Hematoxylin and eosin (H&E) stained for tumor cellularity analysis
before sequencing, and all H&E staining results were scanned and

Fig. 7 | Identification and validation of the radioresponse-related
biomarker, PRKCB. a Relative protein (TMT and DIA) and phosphoprotein
abundance of PRKCB in NATs and TMT proteomic subgroups (two-sided Student’s
test). Boxplots show themedian (central line), the 25–75% IQR (box limits), and the
± 1.5 × IQR (whiskers). b Associations of PRKCB protein abundance (TMT) with
multi-omics profiles (|Spearman’s correlation | > 0.3). cKaplan-Meier curves for PFS
based on PRKCB protein abundance (TMT) of radical radiotherapy patients (two-
sided log-rank test). d Kaplan-Meier curves for PFS based on PRKCB protein
abundance (DIA) of radical radiotherapy CC patients (two-sided log-rank test).
eKaplan-Meier curvesofOSbasedonPRKCBmRNA levelsofTCGACCcohort (two-
sided log-rank test). f Kaplan-Meier curves for PFS based on PRKCB protein
expression investigated by IHC of independent validation cohort (two-sided log-
rank test). g SiHa cells stably expressing PRKCB were generated and confirmed by
immunoblot. EV was used as a negative control. The experiments were repeated at
least three times. h Proliferation of indicated SiHa cells was measured. Data are
represented asmean± SEM (n = 6, two-sided Student’s t test). ⋆⋆⋆P = 1.7E-06 (EV and
PRKCB). i Xenograft tumor pictures of nude mice in different groups. Scale bar,

1 cm. j Tumor growth curves of indicated SiHa cells subcutaneously injected into
nude mice. Data are represented as mean ± SEM (n= 7 mice per group, two-sided
Student’s t test). ⋆⋆⋆P = 2.1E-04 (EV and PRKCB). k Tumor weight of nude mice in
different groups. Data are represented as mean± SEM (n = 7 mice per group, two-
sidedStudent’s t test). ⋆⋆⋆P = 1.6E-04 (EV and PRKCB). lRadiosensitization by PRKCB
overexpression in SiHa cells in colony formation assays compared to EV. Clono-
genic survival fraction were analyzed using SiHa cells in the relevant groups at
radiation doses of 0, 1, 2, 4, 6, and 8Gray. Data are represented as mean ± SEM
(n = 6, two-sidedStudent’s t test). ⋆⋆⋆P = 2.3E-05 (EV and PRKCB).m Flow cytometry
was used to assess the cell cycle distribution of SiHa cells in the relevant groups.
Modfit LT 3.1 was used for data analysis. Forward scatter and side scatter were used
to circle the cell population (excluding debris), and the fluorescence channels PE-A
(area) /PE-W (width) were used to exclude adherent cells. Finally, the proportion of
cells in each stage was fitted. Left: Representative results of the cell cycle analysis.
Right: Histogram of cell cycle distribution. Data are represented as mean ± SEM
(n = 3, two-sided Student’s t test). S: ⋆⋆⋆P = 2.9E-03 (EV and PRKCB). G2/M:
⋆⋆⋆P = 7.6E-05 (EV and PRKCB). Source data are provided as a Source Data file.
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pathologically analyzed. 3) All tumor samples were completed inde-
pendently by two pathologists to ensure histological accuracy and the
NATs contained no tumor cells. 4) The percent tumor nuclei and
percent necrosis were also assessed. Tumors with at least 50% tumor
cell nuclei and less than 10%necrosiswere reserved. All patients signed
separate informed consent forms for sampling, research, and pub-
lication. This study was conducted in accordance with the guidelines
and regulations set forth by the Ethics Committee of National Cancer
Center/Cancer Hospital, Chinese Academy of Medical Sciences and
Peking Union Medical College (approval No. 22/374-3576). The
treatment-naive CC patients were recruited from Cancer Hospital
Chinese Academy of Medical Sciences between June 2019 and July
2021. 139 tumors and 33 NATs (30 NATs with paired tumors) were
collected, and each sample was homogenized via cryo-pulverization
and aliquoted to subsequent genomic, transcriptomic, proteomic,
phosphoproteomic, and acetylproteomic analyses.

Each sample was assigned a new research ID, and the patient’s
name or medical record number used during hospitalization was de-
identified. The clinical information of these enrolled patients were
collected, including SCC, FIGO stage, tumor size, tumor grade, his-
tology type, age diagnosis, HPV type, primary treatment, lymph node
status and PFS information. PFS was defined as the time from the start
of treatment to disease progression, relapse, or death. The follow-up
deadline for these enrolled patients was July 2023. 1 patient did not
receive antitumor treatment. The surgical patients generally have a
good prognosis, no progression was observed in 62 out of the 73 sur-
gical patients at the time of the follow-up cutoff. In addition, the
standard treatment for locally advanced CC is cisplatin-based con-
current chemoradiotherapy, while radiotherapy alone is indicated in
older patients or those with insufficient renal function90. Cisplatin
remains the radiosensitizing agent for patients with locally advanced
CC when used concomitantly with radiotherapy in the National Com-
prehensive Cancer Network guidelines91. In this study, 65 patients
(46.8% of the cohort) received primary treatment with either con-
current chemoradiotherapy (n = 54) or radiotherapy alone (n = 11).
These patients, collectively referred to as radical radiotherapy
patients92,93, were combined for the PFS analysis.

The 124 patients in the independent validation cohort were stage
IIB to stage IVB CC patients who received concurrent chemor-
adiotherapy or radiotherapy alone at the Cancer Hospital of the Chi-
nese Academy of Medical Sciences from November 2015 to December
2017. The clinicopathological parameters and FPS information for
these cases were detailed in Supplementary Data 10.

Cell line
SiHa and HEK293T cells were kept in Dr. Daming Gao’s lab. SiHa cells
were cultured in MEM-NEAA with 10% FBS, 100 units of penicillin and
100mg/mL streptomycin. HEK293T cells were cultured in DMEM with
10% FBS, 100 units of penicillin, and 100mg/mL streptomycin.

Proteogenomic workflow
The proteogenomic research was carried out through the workflow
shown in Supplementary Fig. 1a. To reduce the impact of intra-tumor
heterogeneity on multi-omics analysis, tumors, and NATs were pul-
verized using the CryoPrepTM CP02 (Covaris) and then divided into
twoparts: thefirst partwas snap-frozen in liquid nitrogen and stored at
−80 °C for the following proteomic, phosphoproteomic and acet-
ylproteomics analyses as well as DNA extraction; the second part was
added to the RNAlaterTM Stabilization Solution (Invitrogen, AM7020)
and kept in −80 °C, and then used for RNA extraction.

DNA/RNA extraction, WES, and RNA-seq
Genomic DNA was extracted from tumors and NATs using Magnetic
Universal Genomic DNA Kit (TIANGEN, DP705) according to manu-
facturer’s protocol. Matched blood DNA was also extracted using the

above kit. The quality of isolated genomic DNA was verified by Qubit®
DNA Assay Kit in Qubit® 3.0 Flurometer (Invitrogen) and NanoDrop
2000 (Thermo Fisher Scientific) and the integrity was assessed by
TapeStation (Agilent Technologies). A total amount of 0.2μg DNA per
sample was used as input material for the DNA library preparations.
Sequencing library was generated using NEB Next® UltraTM DNA
Library Prep Kit for Illumina (NEB) following manufacturer’s recom-
mendations and index codeswere added to each sample. DNA libraries
were sequenced on the Illumina NovaSeq 6000 platform and 150 bp
paired-end reads were generated. WES was conducted with a mean
coverage depth of 156X (range: 112-253X) for tumors,157X (range: 125-
216X) for NATs, and 126X (range: 83-205X) for blood samples.

Total RNA was extracted and purified from fresh frozen tissues
using the TRIzol® reagent (Invitrogen, 15596026CN). RNA integritywas
assessed using the RNA Nano 6000 Assay Kit of the Bioanalyzer
2100 system (Agilent Technologies). Briefly, mRNA was purified from
total RNA using poly-T oligo-attached magnetic beads. Fragmentation
was carried out using divalent cations under elevated temperature in
First Strand Synthesis Reaction Buffer (5X). Paired-end libraries were
sequenced on the NovaSeq 6000 Illumina platform, for each tumor
and NAT sample, RNA-seq resulted in an average of 64.1M and 64.4M
high-quality reads, respectively.

MS methods
Protein extraction and tryptic digestion. For protein extraction,
~50mg of cryo-pulverized tumors or NATs were homogenized in
500μL lysis buffer (4% SDS, 0.1M DTT, 0.1 M Tris-HCl, pH 7.6) and
sonicated at 20% amplitude for 2min (5 s on, 5 s off) using Ultrasonic
Homogenizer (NingBo Scientz Biotechnology Co., LTD, JY92-IIDN).
The proteins were then denatured and reduced at 95 °C for 5min.
Lysates were centrifuged at 12,000 g for 10 min to remove the inso-
luble debris and protein concentrations of the clarified lysates were
determined using tryptophan-based fluorescence quantification
method94. Protein lysates (1mg) were diluted to equal concentration
and alkylated with iodoacetamide (IAA) for 45 min at room tempera-
ture in the dark. Then, protein lysates were precipitated by adding ice-
cold acidified acetone/ethanol buffer with five times the volume of
lysis buffer mixed and put them overnight at −20 °C. Precipitated
proteins were collected by centrifugation at 18,000 g for 40min at
4 °C, washed with 1mL ice-cold acetone and 1mL 70% ethanol for
40min at 4 °C. The proteins were then subjected to proteolytic
digestion with sequencing grade modified trypsin (Promega) at 1:50
enzyme-to-substrate ratio overnight at 37 °C. The resulting digests
were acidified with FA to achieve a final volumetric concentration of
1%, and then subjected to desalting using Waters Sep-Pak® Vac 1cc
(50mg) tC18 cartridges.

TMT 16-plex labeling of peptides
Desalted peptides from each sample were labeled with TMTpro 16-
plex reagents (Thermo Fisher Scientific). Tumors and NATs were co-
randomized to 12 TMT sets. The NATs were labeled using channels
that closely matched the paired tumors within the same TMT set. In
addition, paired samples were evenly distributed among the 12 TMT
sets to ensure a balance of NATs across all sets. A mixed sample was
prepared by pooling an aliquot from 30 CC tumors and NATs and
labeledwith channel 134N in all of the TMTpro 16-plex sets as internal
reference. For each TMT labeling experiment, dried peptides
(250μg) from each sample were dissolved in 250μL 100mM TEAB. 5
mg of TMT reagent was dissolved in 205 μL anhydrous acetonitrile,
and then 50μL of each TMT reagent was added to the corresponding
peptides. After 1-h incubation at room temperature, 12.5 μL 5%
hydroxylamine was added to quench the labeling reaction for 15min
at room temperature. The labeled peptides were pooled, dried down
via Speed-Vac, and subsequently desalted on a reversed-phase tC18
SepPak column (Waters).

Article https://doi.org/10.1038/s41467-024-53830-0

Nature Communications |        (2024) 15:10114 14

www.nature.com/naturecommunications


Peptide fractionation
In the TMT-basedproteome analysis, the labeledpeptideswerepooled
together to create a highly complex mixture. To reduce sample com-
plexity and increase the depth of protein identification, high-pH
reverse phase liquid chromatography (RPLC) was used for peptide
fractionation, as previously described33. For each TMT set, about 4mg
TMTpro 16-plex labeled peptides were fractionated using a 4.6mm×
250mm Waters XBridge BEH300 C18 column with 3.5μm size beads
(Waters). Peptides were separated using an Agilent 1260 HPLC
instrument via high-pH RPLC with solvent A (10mM ammonium for-
mate, pH 10) and a non-linear increasing concentration of solvent B
(90% ACN, 10mM ammonium formate, pH 10) at a flow rate of 0.7mL/
min. The 110-min separation gradient was set as follows: 1–5% B in
2min; 5–25% B in 35 min; 25–40% B in 43 min; 40–55% B in 6 min;
55–95% B in 3 min; 95% B for 4 min; 95–1% B in 1 min; 1% B for 16 min.
Peptides were separated and collected every minute for a total of 96
fractions from 3min to 99min, with fractions combined into 24 frac-
tions by a stepwise concatenation strategy. 5% of each of the 24 frac-
tionswas allocated anddrieddown in a Speed-Vac for global proteome
analysis. The remaining 95% sample was then utilized for phospho-
peptides enrichment. In DIA-based proteome analysis, since the sam-
ples are analyzed individually, each sample is directly analyzedwithout
prior fractionation.

Phosphopeptide enrichment
High-Select Fe-NTA kit (Thermo Fisher Scientific, A32992)was used for
phosphopeptide enrichment according to the manufacturer’s
instructions. Briefly, the 24 fractionated peptides were dissolved in
200μL 80% ACN/0.1% TFA and incubated with 50μL Fe3+-NTA agarose
beads for 20min at room temperature. Then, the mixture was trans-
ferred into the filter tip (Axygen, TF-200-L-R-S) and clarified peptide
flow-throughs with unbound peptides were collected by centrifuga-
tion. The resins with phosphopeptides were washed with 200μL 80%
ACN/0.1% TFA for 3 times and 200μL H2O for 3 times. The bound
phosphopeptideswere eluted twicewith 200μL 50%ACN/5%NH3·H2O
and dried down via Speed-Vac. All centrifugation steps above were
conducted at 50 g at room temperature. The eluted peptides were
desalted using C18 stage tips and dried down.

Acetylpeptide enrichment
PTMScan Acetyl-Lysine Motif [Ac-K] Kit (CST, 13416) was used for
acetylpeptide enrichment according to the manufacturer’s instruc-
tions. In brief, tryptic peptides from the flow-through of IMAC were
concatenated into 4 fractions and dried down via Speed-Vac. The dried
peptides were reconstituted in 1.4 mL of the immunoaffinity purifica-
tion (IAP) buffer (50mMMOPS/NaOH pH 7.2, 10mM Na2HPO4 and 50
mM NaCl) and incubated with freshly prepared acetyl-lysine motif
antibody agarosebeads for 2 h at 4 °C. After removing the supernatant,
peptide-bound beads were washed 2 times with 1mL of ice-cold IAP
buffer followed by 3 times with 1mL HPLC H2O. Then, acetylated
peptides were eluted by incubation 2 times with 55μL of 0.15% TFA at
room temperature for 10min. The eluted peptideswere desalted using
C18 stage tips and dried down.

LC-MS/MS analysis for TMT-based proteomics
Peptides were resolved with 0.1% formic acid (FA) and separated on a
nanoflowEasynLC 1200UHPLC system (ThermoFisher Scientific)with
an in-housepacked 20 cm× 75μminterbal diameter C18 column (3μm
ReproSil-Pur C18-AQ beads, Dr. Maisch GmbH). The column was
heated to 50 °C using a home-made column heater. The flow rate was
set at 300 nL/min with 0.1% FA in H2O (Solvent A) and 0.1% FA in 80%
acetonitrile (Solvent B). The 120-min separation gradient was used for
proteome analysis and set as followings: 2–5% B in 1 min; 5–27% B in
94min; 27–35%B in 15min; 35–52% B in 3min; 52–100% B in 1min; and
100% B in 6 min. For phoshoproteome analysis, the same LC and

column setup was used except for a 70-min LC gradient (2–4% B in
1 min; 4–25% B in 51 min; 25–32% B in 8 min; 32–50% B in 3 min;
50–100%B in 1min; and 100%B in 6min). For acetylproteome analysis,
the same LC and column setup was used except for a 180-min LC
gradient (4–35% B in 152min; 35–45% B in 20min; 45–100% B in 2 min;
and 100% B in 6 min).

For proteomic and phosphoproteome analysis, samples were
analyzed with a Q-Exactive HF mass spectrometer (Thermo Fisher
Scientific) equipped with a nanoflow ionization source. Data-
dependent acquisition was performed using Xcalibur software in
positive ion mode at a spray voltage of 2300 V. The MS1 spectra were
measured with a resolution of 120,000@m/z 200, an AGC target of
3e6, a maximum injection time of 50ms and a mass range of 300 to
1700m/z. The data-dependentmode cycle was set to triggerMS2 scan
on up to the top 15 most abundant precursors per cycle at an MS2
resolution of 60,000 @ m/z 200, an AGC target of 1e5, a maximum
injection time of 120 ms, an isolation window of 0.7 m/z, an high
collision dissociation (HCD) collision energy of 30, and a fixed first
mass of 110.0m/z. The dynamic exclusion timewas set as 40 s (30 s for
phosphoproteome) and precursor ions with charge 1, 7, 8 and >8 were
excluded for MS2 analysis.

For acetylproteome analysis, samples were analyzed with a
Q-Exactive HF-X mass spectrometer (Thermo Fisher Scientific) equip-
ped with a nanoflow ionization source. Data-dependent acquisition
was performed using Xcalibur software in positive ionmode at a spray
voltage of 1800 V. The MS1 spectra was measured with a resolution of
120,000@m/z 200, an AGC target of 3e6, a maximum injection time
of 50 ms and a mass range of 350 to 1700 m/z. The data-dependent
mode cycle was set to trigger MS2 scan on up to the top 15 most
abundant precursors per cycle at an MS2 resolution of 45,000 @ m/z
200, an AGC target of 1e5, a maximum injection time of 120 ms, an
isolation window of 0.7m/z, an HCD collision energy of 30, and a fixed
firstmass of 110.0m/z. The dynamic exclusion timewas set as 30 s and
precursor ions with charge 1, 7, 8 and >8 were excluded for MS2
analysis.

DIA analysis
Unlabeled, digested peptides from each sample were separated on a
nanoElute LC system (Bruker) with an analytical column (20 cm× 75
μm, 1.6μm C18 resin, IonOpticks). The column was heated to 50 °C
using a column heater (Bruker). The flow rate was set at 300 nL/min
with 0.1% FA in H2O (Solvent A) and 0.1% FA in acetonitrile (Solvent B).
The 90-min separation gradient was used for proteome analysis and
set as followings: 2–22% B in 75 min; 22–37% B in 5min; 37–80% B in
5min; and 80% B in 5min. Samples were analyzed using a timsTOF Pro
mass spectrometer (Bruker) equipped with a nano-electrospray ion
source (Bruker). Source capillary voltage was set to 1500 V in positive
ionmode, and dry gas flow to 3 L/min at 180 °C. The DIAMS data were
acquired using the diaPASEF method95 consisting of 14 cycles, which
including a total of 28 mass-width windows (25 Da width, from 452 to
1152Da) with 4 mobility windows each, making a total of 56 windows
covering the ion mobility range (1/K0) from 0.76 to 1.29 Vs/cm2. The
MS and MS/MS spectra were acquired from 100 to 1700 m/z. The
TIMS-MS survey scan was acquired between 0.7 and 1.3 Vs/cm2. The
TIMS-MS survey scan was acquired between 0.7–1.3 Vs/cm2 and
100–1700 m/z. The acquisition time of each PASEF scan was set to
100ms with a near 100% duty cycle, which led to a total cycle time of
around 1.59 s.

Database searching of MS data
For TMT-based proteomics, all MS raw files were searched against the
human Swiss-Prot database containing 20,360 sequences plus 277
Swiss-Prot HPVprotein sequences usingMaxQuant (version 1.6.17.0)96.
TMTpro 16-plex based MS2 reporter ion quantification was chosen
with reporter mass tolerance set as 0.003Da. The purities of TMT
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labeling channels were corrected according to the kit LOT number
(WC320807). The PIF (precursor intensity fraction) filter value was set
at 0.5. Enzyme digestion specificity was set to Trypsin andmaximum 2
missed cleavages were allowed. Oxidized methionine, protein N-term
acetylation, lysine acetylation, asparagine, and glutamine (NQ) dea-
midation were set as variable modifications. Carbamidomethyl
cysteine was set as fixed modification. For phosphorylation data ana-
lysis, phospho (STY) was also chosen as a variable modification. The
tolerances of first search and main search for peptides were set at 20
ppm and 4.5 ppm, respectively. A cutoff of 1% FDR was applied at the
peptide, protein, and site level. A minimum of 7 amino acids was
required for peptide identification. For phosphosite and acetylsite
localization, the localization probability >0.75 was considered as a
confident identification. Contaminants, reverse sequences, and only
considered identified sequences identified from the MaxQuant runs
were removed except for KRT family proteins sinceKRT is known to be
highly expressed in squamous cell carcinoma.

For DIA proteomics, raw data files were analyzed using DIA-NN
software (version 1.8.0)97. The Swiss-Prot database was used for a
library-free search with precursor FDR set as 1%. Deep learning-based
spectra and retention timepredictionwere enabled. The fragmentm/z
was set from 200 to 1800 and the peptide length was set from 7 to 30.
Trypsin/P was enabled and maximum number of missed cleavages set
to 1. N-terminal methionine excision was enabled and cysteine carba-
midomethylation was set as a fixed modification. The median number
of points measured across chromatographic peak is 7.

Somatic mutation calling and filtering
WES sequencing reads after exclusion of low-quality reads were map-
ped to GRCh38 reference genome with BWA (Version: 0.7.17, http://
bio-bwa.sourceforge.net/)98, PCR duplicates were removed by Picard
(version 2.27.2, http://broadinstitute.github.io/picard/), the base
quality scorewas recalibrated by the BaseRecalibrator tool fromGATK
(version v4.2.6.1, https://software.broadinstitute.org/gatk/). For
patients with blood WES data, somatic variants were detected using
Mutect2 on tumor exome data and matched blood data. For those
withoutmatchedblooddata, the genetic variants databaseof the 1000
GenomeProjectwas used as the panel of normal. Specifically, germline
variants were filtered from the database of the 1000 Genome Project,
NHLBI-ESP 6500 Exome Sequencing Project, Exome Aggregation
Consortium (EXAC), and Genome Aggregation Database (gnomAD).
Further filtering was done to obtain high-confidence somatic muta-
tions using the criteria: a minimum of 8X coverage, Variant Allele
Fraction (VAF) ≥ 5% and at least 3 variant supporting reads in the
sample. Then, FilterMutectCalls. Annovar (version 2017 Jul 17, https://
annovar.openbioinformatics.org/en/latest/) was used functionally
annotate genetic variants based on the annotation of the human
genome (GRCh38), version 32 (Ensembl 98)99, and mutations in the
non-coding regions (3′UTR, 5′UTR, Intron, gene intergenic etc.) were
removed.

Analysis of significantly mutated genes
The filtered mutations (including SNV and indel) were further used to
identify significantly mutated genes by MutSigCV (version 1.41 http://
www.broadinstitute.org/cancer/cga/MutSig) with default parameters.
Genes with P <0.05 were identified as significantly mutated genes100.

CNAs analysis
CNAs were called using cnvkit (version 0.9.7, https://cnvkit.
readthedocs.io/en/stable/pipeline.html)101 on exome data with
default parameters. All blood samples were generated to build the
copy-number reference. Confident focal SCNAs across all tumor sam-
ples were identified by GISTIC2 with parameters amplifications
threshold: 0.3, deletions threshold: −0.3, focal length cutoff: 0.5, value
threshold: 0.25, genetic: yes, run broad analysis: yes, focal length

cutoff: 0.5, confidence level: 0.99, arm peel: yes, joined segment size:
100, gene collapse method: extreme and max sample segs: 3000.
Significantly amplified and deleted chromosome arms were identified
with a threshold of FDR <0.25102.

Comparisons of frequently mutated genes between cervical
squamous cell carcinoma and adenocarcinoma
The somatic mutation data called by Mutect from GDC TCGA CC were
obtained from https://xenabrowser.net/datapages/, and the cancer
type information was retrieved from TCGA CC paper14. Fisher’s exact
test was used to evaluate the statistical significance of the difference in
mutation rates between patient groups.

RNA-seq data analysis
After removal of adaptor contamination and low-quality reads,
sequencing reads were aligned using STAR (version 2.7.2a) to human
reference sequence (GRCh38 assembly) and featureCounts was used
to produce a matrix of read counts across all genes based on the
GENCODE gene annotation (version 32)103. An average of 68 million
paired-end reads were sequenced per sample. The ratios of uniquely
aligned reads exceeded 88% in all samples. Then, Transcripts Per Mil-
lion (TPM) normalized read count of each gene was calculated based
on the gene length and read countmapped to this gene. Subsequently,
the Log2 transformed TPM values were used for downstream analysis.

HPV detection
After being aligned to hg38 reference genome using STAR, the
unmapped RNA-seq reads were then aligned to the reference genome
of 440 HPV subtypes. HPV detection and genotyping algorithm HPV-
EMwas used to identify the exact genotypic makeup of each sample34.
Here subtypes with mapped read count less than 10 were not con-
sidered. Thedominant infectedHPV subtypewas determinedbasedon
the criterion that its mapped read count was more than ten times
higher than the sum of the other subtypes. For the three tumor sam-
ples (TN33, TB103-1, and TB98-1) lacking transcriptome data, HPV
infection status was determined based on clinical detection records.
HPV-EM was also utilized to measure HPV gene expression, providing
read counts for HPV genes. HPV gene expression was subsequently
normalized to TPM using the total read count aligned to the human
genome.

Inference of cell type score
ESTIMATE was used to infer the stromal and immune scores from the
RNA expression data104. In addition, the signature-based method Xcell
was used to dissect the relative infiltration levels of different immune
cell types105.

Proteomic data analysis
Analysis of TMT quantitative proteomic data. Here we used reverse-
zMAP developed based on our previous MAP model106 to process
cancer proteomics data generated using iTRAQ/TMT platforms with
internal reference samples. Briefly, all the clinical samples were sepa-
rately compared to the internal reference sample generated in the
sameMS run using amodifiedMAP algorithm and a rescaled Log2 ratio
of MS intensities, termed z-statistic, was calculated for each protein to
describe its relative abundance change between the two samples. In
details, for each MS run, we systematically performed pairwise com-
parison for each tissue sample against the reference sample and the
Log2 ratio of its protein intensities is calculated as

Mij = Log2

Sij
Rik

� �
, ð1Þ

in which Sij denotes the MS intensity of protein i in sample j and Rik

represents its intensity in the reference sample of this MS run, i.e., run
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k. Then, a similar slidingwindowanalysis to that performed inMAPwas
applied to derive a linear model for the Log2 ratios in each window.

Mj =μj + σj* bq ð2Þ

Next, natural cubic spline fittingwas separately applied to characterize
the dependence of the fitted μj and σj

2 on the Log2 protein intensity
across all windows. Finally, for each protein, μij and σij were calculated
based on the fitted natural cubic spline function, respectively, and
then, similar to the z-statistic defined inMAP, we defined the z-statistic
of protein i in sample j as

Zij =
Mij � μij

σij
, ð3Þ

in which the dependence of observed Log2 ratios on the protein
intensitieswas effectivelymitigated and the contribution of systematic
and technical errors was rescaled to follow the standard normal dis-
tribution across all samples. Thus, it enables a better characterization
of relative protein expression abundance and can be reliably used for
downstream analyses.

Analysis ofDIAquantitative proteomic data. ForDIAproteomic data,
protein expression profiles from all samples were normalized toge-
ther, to minimize the impact of missing values, and we used the pro-
teins that were detected in all samples to calculate the normalization
factors. Since there are no internal reference samples in the DIA
dataset, we take the geometric mean of all DIA proteomic profiles as a
pseudo-reference sample. Then, a similar parallel pairwise comparison
analysis to that performed on TMT data was applied to compare each
DIA proteomic profile against the pseudo reference sample and cal-
culate a z-statistic for each protein as the basis for downstream
analysis.

Analysis of phosphoproteomic and acetylproteomic data. The
phosphoproteomic and acetylproteomic data were normalized using
the median centering method across adjacent phosphorylation/acet-
ylation sites. Then, similar to the above analysis, we also utilized a
sliding window approach on the M-A plot to first calculate the median
modification intensity change and average modification intensity
within each window. Subsequently, we applied natural cubic spline
fitting to fit the dependence between the median modification inten-
sity change and the average modification intensity across all windows.
Then, the Log2 ratio of each protein’s modification intensities was
adjusted by the estimatedmedianmodification intensity derived from
the fitted natural cubic spline function. The median ratio of all the
modification sites of each protein was calculated as a measure of its
modification level.

Imputation of missing values
DreamAI ensemble algorithm107 (implemented using the DreamAI R
package, https://github.com/WangLab-MSSM/DreamAI) was applied
to impute the missing values in proteomic, phosphoproteomic and
acetylproteomicdata. Imputationwas only performedon the proteins,
phosphosites and acetylsites with a missing rate <50%.

Batch effect and data quality analysis of proteomic data
The batch effect in TMT data after transforming the original MS
intensities into z-statistics was assessed by performing unsupervised
PCA. The leading PCs of the global proteomic data clearly separated
the tumors from NATs, and no obvious batch effect was observed
among the 12 TMT batches. We also performed unsupervised PCA on
the DIA proteomic data, and no obvious batch effect was observed
among the 3 DIA batches, too.

Subgrouping analysis of transcriptomic, proteomic, phospho-
proteomic and acetylproteomic data
For TMT proteomic data, we selected the foremost 3000 proteins
demonstrating the highest variability across tumor samples. Among
these, 1674 proteins were identified without any missing values across
all tumor samples. Subsequently, consensus clustering was performed
on this set of 1674 highly variable proteins using the Consensu-
sClusterPlus R package108. The detailed parameter settings were
number of repetitions = 1000bootstraps; pItem=0.8 (resampling 80%
of any sample); pFeature = 1; distance = “euclidean”; and k-means
clustering with up to 5 clusters.

For phosphoproteomic and acetylproteomic data, top 3000most
variable phosphoproteins/phosphoproteins within tumor samples
were selected based on the protein-level modification abundance
matrix, and among them, phosphoproteins/phosphoproteins without
missing values were used as input for the ConsensusClusterPlus R
package to perform sample clustering, with the same parameters
applied as above.

For RNA-seq data, we applied HyperChIP to model the mean-
variance curve and subsequently utilized scaled variances that con-
sider the mean-variance relationship for gene ranking109. Before
constructing the model, we excluded genes with an average
expression value of Log2 (TPM+ 1) < 2 in the tumor samples. Stan-
dardized z-score matrix of Log2 (TPM+ 1) for the top 3000 hyper-
variable genes were used to perform consensus clustering
using identical parameters as above. In summary, the tumor samples
were classified into three clusters at transcriptome and PTMs levels
as well.

Differential protein expression/modification analysis between
patient subgroups
ANOVA test was used to detect differentially expressed proteins,
phosphosites and acetylsites among the three subgroups, with
Bonferroni-adjusted P-values < 0.05 as the cutoff. Then, to detect
proteins/PTM sites specifically expressed/modified in each subgroup,
hierarchical clustering was applied to divide the differentially expres-
sed proteins and PTM sites into 3 or 4 clusters using seaborn.clus-
termap (python module) with parameter metric = “correlation”;
method = “average” and scipy.cluster.hierarchy.fcluster (Python
module) with parameter criterion = “maxclust”. Pathway enrichment
analysis of the proteins/PTM sites in each cluster was performed using
GSEApy.enrichr (Python module) with the parameter: gene_sets =
“KEGG_2021_Human”. Pathways with BH adjusted P <0.05 were con-
sidered as significantly regulated.

Association between proteomic subgroup and clinical outcome
To compare the survival outcomes among the three proteomic sub-
groups, log-rank test was employed. Then, Kaplan-Meier survival
curves were generated using the KaplanMeierFitter function in Python
to visualize the survival difference between three subgroups of
patients.

Tumor-NAT samples differential expression analysis
Differential expression analysis was performed for 30 paired CC
tumors and NATs using the Student’s t test. P-values were adjusted
using the BH method. Each feature was required to be non-missing in
at least 50%of thepaired samples. Proteins or phosphosites/acetylsites
(collapsed into gene-level) differentially expressed between tumors
and NATs (BH adjusted P <0.01, Log2 FC> 1 or < −1) were further used
for over-representation analysis by WebGestalt110.

Multi-omics data integration
Analysis of mRNA-protein expression correlation. Spearman’s cor-
relation coefficient was used to measure the correlation between each
mRNA-protein pair across all 132 tumors (using the RNA-seq and TMT
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proteomic data). In addition, a P-value was calculated for each corre-
lation coefficient, which was then adjusted for multiple testing using
the BH method. The correlation between a mRNA-protein pair was
called significant if the adjusted P-value was found to be <0.05. A total
number of 6089mRNA-protein-matched genes were examined, with a
median Spearman’s correlation coefficient of r = 0.40. Moreover, the
mRNA and protein levels were found to be positively correlated for
most (95.9%) mRNA-protein pairs, and 81.7% showed significant posi-
tive correlation.

Analysis of the cis/trans effect of CNAs. The effects of SCNAs on
mRNA, protein, and phosphoprotein abundance levels in either cis
(within the same aberrant locus) or trans (remote locus) mode
were visualized by multiOmicsViz (R package). Spearman’s correla-
tion coefficients and the associated P values after adjustment
for multiple testing were calculated for all possible CNA-mRNA/
protein/phosphoprotein pairs. BH adjusted P < 0.01 was used to
identify the significant correlations. A total of 130 tumor samples
with both mRNA, WES, and proteomic data were included in this
analysis.

Identification of CNG-Cis and CNL-Cis genes
Among the 8035 genes located within amplification foci, 337 genes
showed significantly higher abundance in tumor samples compared
with NATs at both mRNA and protein levels (Wilcoxon rank-sum test,
BH adjusted P < 0.05), and 227 genes also represented significant
correlation of copy number with corresponding RNA levels, includ-
ing 178 that displayed concordant protein expression (Spearman’s
correlation >0, BH adjusted P < 0.05). These 178 genes were identi-
fied as CNG-Cis genes. The same screening method was used to
identify 28 CNL-Cis genes that were downregulated in tumor
samples.

Analysis of the effects of arm-level CNAs
Arm-level CNAs were detected using Log2 (tumor/blood) = 0.3/−0.3
(corresponding to arm-gain/loss, respectively) as the cutoff. Then, for
each detected arm gain/loss event, the tumor samples were accord-
ingly divided into two subgroups and the proteins whose expression
was significantly associated with this event were identified using Stu-
dent’s t test (with FDR <0.05 as the cutoff). KEGGpathway enrichment
analysis of the arm gain/loss-associated proteins supported by both
TMT and DIA data was performed using GSEApy.enricher (python
module) with the parameter gene_sets = “KEGG_2021_Human”111.
Pathways with FDR <0.05 were regarded as arm gain/loss-associated
pathways.

Identification of radioresponse-related biomarkers
For each candidate protein, we stratified the 62 radical radiotherapy
CC patients into two groups using its median expression level as the
cutoff. Then, Cox proportional hazards regression for PFS data was
performed to identify radioresponse-related biomarkers of CC. Pro-
teins detected in at least more than half of the samples are used here.
The filter criteria for biomarker were: P-value of Cox proportional
hazards regression <0.05; Log (HR) upper 95%<0 and Log (HR) lower
95% >0 for candidate favorable and unfavorable proteins, respec-
tively. Finally, 37 favorable and 55 unfavorable radioresponse-related
biomarkers were identified, supported by both TMT and DIA pro-
teomic data. Kaplan-Meier curves (log-rank test) were used to visualize
the prognosis difference between radical radiotherapy patients with
high and low protein expression.

Risk scoring model based on radioresponse-related biomarkers
We identified 92 radioresponse-related biomarkers, comprising 55
prognostically unfavorable proteins and 37 favorable ones. Unfavor-
able score and favorable score of each sample were calculated

according to the following formulas.

unf avorable scorej =

Pmj

i= 1 Zij �median Zi, j = 1, 2, ���ni

� �� �
mj

ð4Þ

f avorable scorej =

Ppj

i= 1 Zij �median Zi, j = 1, 2, ���qi

� �� �
pj

ð5Þ

Zij donate z-statistic of protein i in sample j. mj and pj represent
the number of prognostically unfavorable or favorable proteins
detected in sample j, respectively. ni and qi represent the number of
samples in which unfavorable or favorable protein i was detected,
respectively.

Thenwe calculated the risk score for each sample, the risk scoring
model based on above formulas was successfully constructed.

risk scorej = unf avorable scorej � f avorable scorej ð6Þ

62 radical radiotherapy patients were divided into high-risk and
low-risk groups based on the median of the risk scores. Next, we vali-
dated the prognostic predictive ability of the risk scoring model using
the TCGA CC. Firstly, we performed z-score transformation on the
FPKM matrix at the gene level. Subsequently, risk scores were calcu-
lated for TCGA samples. 291 TCGA CC samples were divided into high-
risk and low-risk groups based on the median of the risk scores.
Kaplan-Meier analysis (log-rank test) was utilized to illustrate the
prognosis disparity between the two groups.

Identification of subgroup-specific kinases
We applied KSEA to estimate the change in a kinase’s activity based on
the collective phosphorylation changes of its identified substrates
using the method proposed in KSEA app112. Here all Kinase-Substrate
annotations fromPhosphoSitePlus and fromNetworKINwere used. To
identify subgroup-specific kinases,wefirst performed a Student’s t test
for each phosphosite between its phosphorylation levels in the sam-
ples of a specific subgroup and all other samples. Then, a kinase’s
normalized KSEA score is calculated as:

KSEA Score=
ð�t � �pÞ ffiffiffiffiffi

m
p

δ
, ð7Þ

in which �t denotes the mean t-statistic of the known substrate
phosphosites of this kinase, �p represents the mean t-statistic of all
phosphosites in the dataset, m denotes the total number of known
substrate phosphosites of this kinase, δ denotes the standard devia-
tion of the t-statistics across all phosphosites in the dataset. Subse-
quently, the corresponding P-value is determinedby assessing theone-
tailed probability of having a more extreme score than the one mea-
sured based on the normal distribution. Finally, subgroup-specific
kinases were selected based on: protein expression levels were found
to be significantly higher in a specific subgroup than in other tumor
samples (Student’s t test, P-value < 0.05); P-value of KSEA score < 0.05.

Pathway enrichment of HPV gene-associated proteins
Spearman’s correlation coefficient was calculated between HPV E6/L1
mRNA level and protein abundance of human genes, which was sub-
sequently used to rank the human genes. Then, the resulting ranked
gene list was used as input for the GSEApy.prerank (Pythonmodule) to
perform pathway enrichment analysis using the following detailed
settings: gene_sets = “KEGG_2021_Human”; min_size = 5; max_size =
1000; and permutation_num = 1000. Pathways with FDR <0.05 were
regarded as HPV gene-associated pathways.
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Subgrouping analysis based on HPV gene expression
CC tumors were stratified into two subgroups based on the mRNA
expression levels of HPV E2 and E5 genes by hierarchical clustering
(using the Python function scipy.cluster.hierarchy.linkage with para-
meters method = “ward” and metric = “euclidean”). The resulting
linkage matrix was then used as input for scipy.cluster.hier-
archy.fcluster to create flat clusters, with the criterion parameter set to
“maxclust” and “t = 2”. Then, we employed either Chi-square test or
Fisher’s exact test to test the association between the detected sub-
groups and the clinical features of patients, depending on the number
of categories in each clinical feature. For continuous clinical features,
we used the Student’s t test. P-valueswere adjusted formultiple testing
using the BH method.

Functional experiments
siRNA Interference. The siRNAs were synthesized by GenePharma. All
siRNA transfections were performed with Lipofectamine 2000 (Invi-
trogen, 11668019) at 50 nM final concentration according to the
manufacturer’s protocol. The siRNA sequence information was shown
in Supplementary Data 11.

Plasmids
The HA-tagged coding sequence of human HATs was cloned into
pCDNA3.1 vector. The Flag-tagged coding sequence of human
FOSL2-WT or the relevant FOSL2-K222R, FOSL2-K222Q mutant were
cloned into the lentiviral vector pLEX-MCS-CMV-puro (Addgene) to
generate corresponding expression plasmids. The Flag-tagged cod-
ing sequence of human PRKCB were cloned into pLVX-IRES-Neo
(Clontech) vector.

Cell transfection and lentiviral production
Cells were transfectedwith plasmid vectors using Lipofectamine 2000
according to the manufacturer’s instructions. To generate the lenti-
virus, HEK293T cells were co-transfected with psPAX2, pMD2.G, and
recombinant lentiviral vectors. Forty-eight hours after transfection,
the lentiviral supernatants were harvested and passed through a
0.45μM filter. The lentiviruses were added to media supplemented
with 10 μg/mL polybrene (Beyotime, C0351-1 mL) to transduce SiHa
cells following the manufacturer’s instructions.

Constructions of stable cell lines
To establish FOSL2-WT or FOSL2-K222R, FOSL2-K222Q mutant SiHa
cell linemodels, SiHa cells were infected with respective lentivirus and
further selected with 0.6 µg/mL puromycin (Beyotime Biotechnology,
ST551-10mg). To establish inducible PRKCB-overexpressing SiHa cell
strains, SiHa cells were infected with pLVX-IRES-Neo-PRKCB lentivirus
and further selected with 0.8mg/mL G418 (Gibco, 10131035).

Cell proliferation assay
For cell growth assays, experimental and control cells were plated in
96-well plate (2*103 cells per well). For measurement, CCK-8 solution
(Beyotime Biotechnology, C0039) at the final concentration of 10%
was added to the wells, and absorbance at 450 nm was measured 2 h
after incubation to represent the relative cell numbers.

Colony formation assay
To evaluate the clonogenic capacity of experimental and control cells,
500 cells were plated in six-well plate in triplicated. After 10–12 days of
continuous culture, the cells were fixed with methanol and stained
with 1% crystal violet (Sigma, C0775). The colonies were counted, and
each assay was repeated at least three times independently.

Cell cycle analysis
For cell cycle assays, experimental and control cells were seeded in
6-well plate (2*105 cells per well). The cells were collected by

trypsinization and fixed in ice-cold 70% ethanol overnight at 4 °C. The
cell cycle detection kit (Nanjing KeyGen Biotech, KGA512) and BD LSR
II flowcytometer (BD Biosciences) were applied to detect cell cycle
distribution. The cell cycle result profiles were analyzed using ModFit
LT 3.1 (Verity Software House).

IHC
The fresh tumors and NATs were fixed in 10% neutral buffered for-
malin, embedded in paraffin, and used to prepare sections that were
4 μm thick. The sections were deparaffinized, rehydrated, and then
immersed in a 3% hydrogen peroxide solution for 10min. For antigen
retrieval, the sections were heated in citrate buffer (pH 6.0) at 95 °C
for 25min and then cooled at room temperature for 60 min. After
each incubation step, the sections were washed with PBS (pH 7.4).
Subsequently, the sections were incubated overnight at 4 °C with the
anti-PRKCB antibody (Abcam, ab195039). Immunostaining was car-
ried out following the instructions provided by the manufacturer
(PV-9000 Polymer Detection System, Zhongshan Golden Bridge).
The sections were counterstained with hematoxylin, dehydrated
using graded ethanol, and sealed with neutral resin. Two investiga-
tors independently assessed the IHC staining of PRKCB on the
sections.

Immunoblot and immunoprecipitation
Cells were lysed in EBC lysis buffer (50mM Tris HCl, pH 8.0, 120mM
NaCl, 0.5% NP-40) supplemented with protease inhibitors (Selleck
Chemicals) and phosphatase inhibitors (Selleck Chemicals), followed
by pulse sonication for 10 s. 30mg total protein were separated by
10% SDS-PAGE gel and blotted with indicated primary antibodies. For
immunoprecipitation (IP), the whole cell lysates (WCL) were immu-
noprecipitated with anti-Flag M2 agarose beads for 2 h in the pre-
sence of 2 μM TSA and 10mM nicotinamide (NAM). The pellet was
then washed with NETN buffer (20 mM Tris-HCl, pH 8.0, 100mM
NaCl, 0.5% NP-40, 1mM EDTA) for four times and analyzed by
immunoblotting or MS.

qRT-PCR
Total RNA was extracted following the manufacturer’s instructions
using the RNApure Tissue & Cell Kit (Cwbiotech, CW0560S). Subse-
quently, the isolated RNA served as a template for reverse-
transcription reactions employing the HiFiScript cDNA Synthesis Kit
(Cwbiotech, CW2569M). qRT-PCRanalysiswas conductedusing theTB
Green® Premix Ex Taq™ II (TaKaRa, RR820A) and CFX96 Real-Time
System (Bio-Rad). β-actin was served as an internal control. The rela-
tive quantification of gene expression was analyzed by the 2−△△Ct

method. The primers used for qRT-PCR analyses are as following:
WNT5A Forward: 5′-GCCAGTATCAATTCCGACATCG-3′,
Reverse: 5′-TCACCGCGTATGTGAAGGC-3′
FOSL2 Forward: 5’-CAGAAATTCCGGGTAGATATGCC-3′
Reverse: 5′-GGTATGGGTTGGACATGGAGG-3′
β-actin Forward: 5′-AGAGCTACGAGCTGCCTGAC-3′,
Reverse: 5′-AGCACTGTGTTGGCGTACAG-3′

Xenograft tumorigenesis assay
Five-week-old female BALB/c nude mice (HFK Bioscience) were
maintained in pathogen-free conditions. All animals were acclimated
for 1 week before experiments. 3*106 experimental and control SiHa
cells in 100 μL PBS were subcutaneously inoculated at the flank of
randomly grouped nude mice. Tumor size was measured every
3 days with a caliper and tumor volumes were calculated by the
formula: volume = (width)2*length*0.52. The maximum tumor bur-
den allowed by the ethics committee did not exceed 1500mm3.
When the tumor burden reached 1500mm3, the mice were eutha-
nized, and the tumors were dissected for further analysis. After the
mice were euthanized, the transplanted tumors were weighed and
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photographed. All animal procedures were performed according to
the guidelines approved by the National Cancer Center/National
Clinical Research Center for Cancer/Cancer Hospital, Chinese Acad-
emy of Medical Sciences and Peking Union Medical College and
adhered to the National Institutes of Health Guide for the care and
use of laboratory animals.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The WES and RNA-seq raw data have been deposited in the Genome
Sequence Archive in National Genomics Data Center, China National
Center for Bioinformation/Beijing Institute of Genomics, Chinese
Academy of Sciences113,114 under accession number HRA005516. The
raw WES and RNA-seq data are available for research use only with
restricted access, which can be obtained through the Data Access
Committees of the GSA-human database. Data access is open to all
non-profit researchers in compliance with the guidelines set by GSA-
human. Alternatively, the user may also directly contact the corre-
sponding author. Once access has been approved, the data will be
available to download for 2 months. The proteomics, phosphopro-
teomics, and acetylproteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE115 partner repository
with the dataset identifier PXD055203. Transcriptomics and survival
data of TCGA CCwere downloaded fromXena [https://xenabrowser.
net/datapages/]. For more information in this study, please contact
the corresponding authors. Source data are provided with
this paper.

Code availability
The codes are available at https://github.com/guixiuqi/CC_multiomics.

References
1. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN esti-

mates of incidence and mortality worldwide for 36 cancers in 185
countries. CA Cancer J. Clin. 71, 209–249 (2021).

2. zur Hausen, H. Papillomavirus infections—amajor cause of human
cancers. Biochim. Biophys. Acta 1288, F55–F78 (1996).

3. Brisson,M. et al. Impact of HPV vaccination and cervical screening
on cervical cancer elimination: a comparative modelling analysis
in 78 low-income and lower-middle-income countries. Lancet
395, 575–590 (2020).

4. Arbyn, M. et al. Estimates of incidence and mortality of cervical
cancer in 2018: a worldwide analysis. Lancet Glob. Health 8,
e191–e203 (2020).

5. McNeil, C. New standard of care for cervical cancer sets stage for
next questions. J. Natl. Cancer Inst. 91, 500–501 (1999).

6. Rose, P. G. et al. Concurrent cisplatin-based radiotherapy and
chemotherapy for locally advanced cervical cancer. N. Engl. J.
Med. 340, 1144–1153 (1999).

7. Whitney, C. W. et al. Randomized comparison of fluorouracil
plus cisplatin versus hydroxyurea as an adjunct to radiation
therapy in stage IIB-IVA carcinoma of the cervix with negative
para-aortic lymph nodes: a Gynecologic Oncology Group and
Southwest Oncology Group study. J. Clin. Oncol. 17,
1339–1348 (1999).

8. Shrivastava, S. et al. Cisplatin chemoradiotherapy vs radiotherapy
in FIGOstage IIIB squamous cell carcinoma of the uterine cervix: a
randomized clinical trial. JAMA Oncol. 4, 506–513 (2018).

9. Potter, R. et al. MRI-guided adaptive brachytherapy in locally
advanced cervical cancer (EMBRACE-I): amulticentre prospective
cohort study. Lancet Oncol. 22, 538–547 (2021).

10. Mileshkin, L. R. et al. Adjuvant chemotherapy following chemor-
adiotherapy as primary treatment for locally advanced cervical
cancer versus chemoradiotherapy alone (OUTBACK): an interna-
tional, open-label, randomised, phase 3 trial. Lancet Oncol. 24,
468–482 (2023).

11. Shi, Y. et al. A genome-wide association study identifies two new
cervical cancer susceptibility loci at 4q12 and 17q12. Nat. Genet.
45, 918–922 (2013).

12. Ojesina, A. I. et al. Landscape of genomic alterations in cervical
carcinomas. Nature 506, 371 (2014).

13. Hu, Z. et al. Genome-wide profiling of HPV integration in cervical
cancer identifies clustered genomic hot spots and a potential
microhomology-mediated integrationmechanism.Nat. Genet.47,
158–163 (2015).

14. Cancer Genome Atlas Research, N. et al. Integrated genomic and
molecular characterization of cervical cancer. Nature 543,
378–384 (2017).

15. Gagliardi, A. et al. Analysis of Ugandan cervical carcinomas
identifies human papillomavirus clade-specific epigenome and
transcriptome landscapes. Nat. Genet. 52, 800–810 (2020).

16. Fan, J. et al. Multi-omics characterization of silent and productive
HPV integration in cervical cancer. Cell Genom. 3, 100211 (2023).

17. Mertins, P. et al. Proteogenomics connects somatic mutations to
signalling in breast cancer. Nature 534, 55–62 (2016).

18. Krug, K. et al. Proteogenomic landscape of breast cancer tumor-
igenesis and targeted therapy. Cell 183, 1436–1456 e1431 (2020).

19. Dou, Y. et al. Proteogenomic characterization of endometrial
carcinoma. Cell 180, 729–748.e726 (2020).

20. Dou, Y. et al. Proteogenomic insights suggest druggablepathways
in endometrial carcinoma. Cancer Cell 41, 1586–1605.e15 (2023).

21. Zhang, H. et al. Integrated proteogenomic characterization of
humanhigh-grade serous ovarian.Cancer. Cell 166, 755–765 (2016).

22. Chowdhury, S. et al. Proteogenomic analysis of chemo-refractory
high-grade serous ovarian cancer. Cell 186,
3476–3498.e3435 (2023).

23. Froimchuk, E., Jang, Y. & Ge, K. Histone H3 lysine 4 methyl-
transferase KMT2D. Gene 627, 337–342 (2017).

24. Fagan, R. J. & Dingwall, A. K. COMPASS ascending: emerging
clues regarding the roles of MLL3/KMT2C and MLL2/KMT2D pro-
teins in cancer. Cancer Lett. 458, 56–65 (2019).

25. Mendiratta, G. et al. Cancer genemutation frequencies for the US
population. Nat. Commun. 12, 5961 (2021).

26. Clark, D. J. et al. Integrated proteogenomic characterization of
clear cell renal cell carcinoma. Cell 179, 964–983.e931 (2019).

27. Li, C., Guo, L., Li, S. & Hua, K. Single-cell transcriptomics reveals
the landscape of intra-tumoral heterogeneity and transcriptional
activities of ECs in CC. Mol. Ther. Nucleic Acids 24,
682–694 (2021).

28. Ou, Z. et al. Single-nucleus RNA sequencing and spatial tran-
scriptomics reveal the immunological microenvironment of cer-
vical squamous cell carcinoma. Adv. Sci. 9, e2203040 (2022).

29. Liu, C. et al. Single-cell dissection of cellular and molecular fea-
tures underlying human cervical squamous cell carcinoma initia-
tion and progression. Sci. Adv. 9, eadd8977 (2023).

30. Carter, S. L. et al. Absolute quantification of somatic DNA altera-
tions in human cancer. Nat. Biotechnol. 30, 413–421 (2012).

31. Chen, R. J. et al. Influence of histologic type and age on survival
rates for invasive cervical carcinoma in Taiwan. Gynecol. Oncol.
73, 184–190 (1999).

32. Jung, E. J. et al. Cervical adenocarcinoma has a poorer prognosis
and a higher propensity for distant recurrence than squamous cell
carcinoma. Int. J. Gynecol. Cancer 27, 1228–1236 (2017).

33. Gao, Q. et al. Integrated proteogenomic characterization of hbv-
related hepatocellular carcinoma. Cell 179, 561–577.e522 (2019).

Article https://doi.org/10.1038/s41467-024-53830-0

Nature Communications |        (2024) 15:10114 20

https://bigd.big.ac.cn/gsa-human/browse/HRA005516
http://www.ebi.ac.uk/pride/archive/projects/PXD055203
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://github.com/guixiuqi/CC_multiomics
www.nature.com/naturecommunications


34. Inkman, M. J. et al. HPV-EM: an accurate HPV detection and gen-
otyping EM algorithm. Sci. Rep. 10, 14340 (2020).

35. Hawley-Nelson, P., Vousden, K. H., Hubbert, N. L., Lowy, D. R.
& Schiller, J. T. HPV16 E6 and E7 proteins cooperate to
immortalize human foreskin keratinocytes. EMBO J. 8,
3905–3910 (1989).

36. Tanaka, N. et al. Wee-1 kinase inhibition sensitizes high-risk HPV+
HNSCC to apoptosis accompanied by downregulation of MCl-1
and XIAP antiapoptotic proteins. Clin. Cancer Res. 21,
4831–4844 (2015).

37. Diab, A. et al. FOXM1 drives HPV+ HNSCC sensitivity to WEE1
inhibition. Proc. Natl. Acad. Sci. USA 117, 28287–28296 (2020).

38. Celeste, A. et al. Histone H2AX phosphorylation is dispensable for
the initial recognition of DNA breaks. Nat. Cell. Biol. 5,
675–679 (2003).

39. McBride, A. A. Human papillomaviruses: diversity, infection and
host interactions. Nat. Rev. Microbiol. 20, 95–108 (2022).

40. Baker, C. C. et al. Structural and transcriptional analysis of human
papillomavirus type 16 sequences in cervical carcinoma cell lines.
J. Virol. 61, 962–971 (1987).

41. Durst, M., Croce, C. M., Gissmann, L., Schwarz, E. & Huebner, K.
Papillomavirus sequences integrate near cellular oncogenes in
some cervical carcinomas. Proc. Natl. Acad. Sci. USA 84,
1070–1074 (1987).

42. Schwarz, E. et al. Structure and transcription of human papillo-
mavirus sequences in cervical carcinoma cells. Nature 314,
111–114 (1985).

43. Feng, D. et al. Regulation of Wnt/PCP signaling through p97/VCP-
KBTBD7-mediated Vangl ubiquitination and endoplasmic
reticulum-associated degradation. Sci. Adv. 7, eabg2099 (2021).

44. Liu, C., Wang, X. & Zhang, Y. The roles of HK2 on tumorigenesis of
cervical cancer. Technol. Cancer Res. Treat. 18,
1533033819871306 (2019).

45. Chen, Q. et al. Hexokinases 2 promoted cell motility and distant
metastasis by elevating fibronectin throughAkt1/p-Akt1 in cervical
cancer cells. Cancer Cell Int. 21, 600 (2021).

46. Kim, B. H. & Chang, J. H. Differential effect of GLUT1 over-
expression on survival and tumor immune microenvironment of
human papilloma virus type 16-positive and -negative cervical
cancer. Sci. Rep. 9, 13301 (2019).

47. Kanjanapan, Y. et al. Glut-1 expression in small cervical biopsies is
prognostic in cervical cancers treated with chemoradiation. Clin.
Transl. Radiat. Oncol. 2, 53–58 (2017).

48. Reyna-Hernandez, M. A. et al. GLUT1, LDHA, andMCT4 expression
is deregulated in cervical cancer and precursor lesions. J. His-
tochem. Cytochem. 70, 437–446 (2022).

49. Priego-Hernandez, V. D. et al. Expression of HIF-1alpha and
genes involved in glucose metabolism is increased in cervical
cancer and HPV-16-positive cell lines. Pathogens 12,
33 (2022).

50. Delvecchio, M., Gaucher, J., Aguilar-Gurrieri, C., Ortega, E. &
Panne, D. Structure of the p300catalytic core and implications for
chromatin targeting and HAT regulation.Nat. Struct. Mol. Biol. 20,
1040–1046 (2013).

51. Thompson, P. R. et al. Regulation of the p300 HAT domain via a
novel activation loop. Nat. Struct. Mol. Biol. 11, 308–315 (2004).

52. Birnhuber, A., Biasin, V., Schnoegl, D., Marsh, L. M. & Kwa-
piszewska, G. Transcription factor Fra-2 and its emerging role in
matrix deposition, proliferation and inflammation in chronic lung
diseases. Cell. Signal. 64, 109408 (2019).

53. Sarode, P. et al. Reprogramming of tumor-associated macro-
phages by targeting beta-catenin/FOSL2/ARID5A signaling:
a potential treatment of lung cancer. Sci. Adv. 6, eaaz6105
(2020).

54. Wan, X. et al. FOSL2 promotes VEGF-independent angiogenesis
by transcriptionnally activatingWnt5a in breast cancer-associated
fibroblasts. Theranostics 11, 4975–4991 (2021).

55. Song, L. N. et al. Hsa_circ_0003998 promotes epithelial to
mesenchymal transition of hepatocellular carcinoma by sponging
miR-143-3p and PCBP1. J. Exp. Clin. Cancer Res. 39, 114 (2020).

56. Faridi, M. H. et al. CD11b activation suppresses TLR-dependent
inflammation and autoimmunity in systemic lupus erythematosus.
J. Clin. Investig. 127, 1271–1283 (2017).

57. Faridar, A. et al. Ex vivo expandedhuman regulatory T cellsmodify
neuroinflammation in a preclinical model of Alzheimer’s disease.
Acta Neuropathol. Commun. 10, 144 (2022).

58. Wahl, M. C. & Luhrmann, R. SnapShot: spliceosome dynamics I.
Cell 161, 1474–e1471 (2015).

59. Chen,W. et al. Transcriptome-wide interrogation of the functional
intronome by spliceosome profiling. Cell 173, 1031–1044.e1013
(2018).

60. Dowling, C. M. et al. Protein kinase C beta II suppresses colorectal
cancer by regulating IGF-1 mediated cell survival. Oncotarget 7,
20919–20933 (2016).

61. Ke, G. et al. MiR-181a confers resistance of cervical cancer to
radiation therapy through targeting the pro-apoptotic PRKCD
gene. Oncogene 32, 3019–3027 (2013).

62. Bowden, S. J. et al. Genetic variation in cervical preinvasive and
invasive disease: a genome-wide association study. Lancet Oncol.
22, 548–557 (2021).

63. Qing, S. et al. Proteomic identification of potential biomarkers for
cervical squamous cell carcinoma and human papillomavirus
infection. Tumour Biol. 39, 1010428317697547 (2017).

64. Guzel, C. et al. Proteomic alterations in early stagecervical cancer.
Oncotarget 9, 18128–18147 (2018).

65. Kelly, A. D. et al. Pan-cancer landscape of CD274 (PD-L1) rearran-
gements in 283,050 patient samples, its correlation with PD-L1
protein expression, and immunotherapy response. J. Immunother.
Cancer 9, e003550 (2021).

66. Howie, H. L. et al. Beta-HPV 5 and 8 E6 promotep300degradation
by blocking AKT/p300 association. PLoS Pathog. 7, e1002211
(2011).

67. Ou, H. D., May, A. P. & O’Shea, C. C. The critical protein interac-
tions and structures that elicit growth deregulation in cancer and
viral replication. Wiley Interdiscip. Rev. Syst. Biol. Med. 3,
48–73 (2011).

68. Lee, Y. Y. et al. Anti-tumor effects of Wee1 kinase inhibitor with
radiotherapy in human cervical cancer. Sci. Rep. 9, 15394 (2019).

69. Mah, L. J., El-Osta, A. & Karagiannis, T. C. gammaH2AX: a sensitive
molecular marker of DNA damage and repair. Leukemia 24,
679–686 (2010).

70. Satpathy, S. et al. A proteogenomic portrait of lung squamous cell
carcinoma. Cell 184, 4348–4371.e4340 (2021).

71. Wang, Z. et al. Acetylation of PHF5A modulates stress responses
and colorectal carcinogenesis through alternative splicing-
mediated upregulation of KDM3A. Mol. Cell 74, 1250–1263.e1256
(2019).

72. Chai, X. et al. Quantitative acetylome analysis reveals histone
modifications that may predict prognosis in hepatitis B-related
hepatocellular carcinoma. Clin. Transl. Med. 11, e313 (2021).

73. Dou, C. et al. P300 acetyltransferase mediates stiffness-induced
activation of hepatic stellate cells into tumor-promoting myofi-
broblasts. Gastroenterology 154, 2209–2221.e2214 (2018).

74. Li, M. et al. High expression of transcriptional coactivator p300
correlates with aggressive features and poor prognosis of hepa-
tocellular carcinoma. J. Transl. Med. 9, 5 (2011).

75. Debes, J. D. et al. p300 in prostate cancer proliferation and pro-
gression. Cancer Res. 63, 7638–7640 (2003).

Article https://doi.org/10.1038/s41467-024-53830-0

Nature Communications |        (2024) 15:10114 21

www.nature.com/naturecommunications


76. Wang, L. et al. The leukemogenicity of AML1-ETO is dependent on
site-specific lysine acetylation. Science 333, 765–769 (2011).

77. Ogiwara, H. et al. Targeting p300 addiction in CBP-deficient
cancers causes synthetic lethality by apoptotic cell death due
to abrogation of MYC expression. Cancer Discov. 6,
430–445 (2016).

78. Lasko, L. M. et al. Discovery of a selective catalytic p300/CBP
inhibitor that targets lineage-specific tumours. Nature 550,
128–132 (2017).

79. Giotopoulos, G. et al. The epigenetic regulators CBP and
p300 facilitate leukemogenesis and represent therapeutic
targets in acute myeloid leukemia. Oncogene 35, 279–289
(2016).

80. Zhong, J. et al. p300 acetyltransferase regulates androgen
receptor degradation and PTEN-deficient prostate tumorigenesis.
Cancer Res. 74, 1870–1880 (2014).

81. He, H. et al. Selective p300 inhibitor C646 inhibited HPV E6-E7
genes, altered glucose metabolism and induced apoptosis in
cervical cancer cells. Eur. J. Pharmacol. 812, 206–215 (2017).

82. Zhang, L. et al. Identification of lysine acetylome in cervical cancer
by label-free quantitative proteomics. Cancer Cell Int. 20,
182 (2020).

83. Young, R. H. & Scully, R. E. Invasive adenocarcinoma and related
tumors of the uterine cervix. Semin. Diagn. Pathol. 7, 205–227
(1990).

84. Cheng, Y. et al. The role of high-risk human papillomavirus-related
long non-coding RNAs in the prognosis of cervical squamous cell
carcinoma. DNA Cell Biol. 39, 645–653 (2020).

85. Liu, C. et al. Single-cell RNA-sequencing reveals
radiochemotherapy-induced innate immune activation and MHC-
II upregulation in cervical cancer. Signal Transduct. Target. Ther.
8, 44 (2023).

86. Wang, J. et al. PRKCB is relevant to prognosis of lung adeno-
carcinoma through methylation and immune infiltration. Thorac.
Cancer 13, 1837–1849 (2022).

87. Lin, G., Brownsey, R. W. & MacLeod, K. M. Regulation of mito-
chondrial aconitase by phosphorylation in diabetic rat heart. Cell.
Mol. Life Sci. 66, 919–932 (2009).

88. Kowalczyk, J. E. et al. Protein kinase C beta in postischemic brain
mitochondria. Mitochondrion 12, 138–143 (2012).

89. Patergnani, S. et al. PRKCB/protein kinase C, beta and the mito-
chondrial axis as key regulators of autophagy. Autophagy 9,
1367–1385 (2013).

90. Yang, X. et al. Prognostic nomograms predicting survival in
patients with locally advanced cervical squamous cell carcinoma:
the first nomogram compared with revised figo 2018 staging
system. Front. Oncol. 10, 591700 (2020).

91. Abu-Rustum, N. R. et al. NCCN Guidelines(R) insights: cervical
cancer, Version 1.2024. J. Natl. Compr. Canc. Netw. 21,
1224–1233 (2023).

92. Serarslan, A., Gursel, B., Meydan, D. & Ozbek Okumus, N. Radical
radiotherapy in patientswith cervix uteri carcinoma: experience of
Ondokuz Mayis University. BMC Cancer 19, 1208 (2019).

93. Chai, Y. et al. Radical hysterectomy with adjuvant radiotherapy
versus radical radiotherapy for FIGO stage IIB cervical cancer.
BMC Cancer 14, 63 (2014).

94. Thakur, S. S. et al. Deep and highly sensitive proteome coverage
by LC-MS/MS without prefractionation. Mol. Cell. Proteomics 10,
M110 003699 (2011).

95. Meier, F. et al. diaPASEF: parallel accumulation-serial fragmenta-
tion combined with data-independent acquisition. Nat. Methods
17, 1229–1236 (2020).

96. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational
platform for mass spectrometry-based shotgun proteomics. Nat.
Protoc. 11, 2301–2319 (2016).

97. Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser,
M. DIA-NN: neural networks and interference correction enable
deep proteome coverage in high throughput. Nat. Methods 17,
41–44 (2020).

98. Li, H. & Durbin, R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

99. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annota-
tion of genetic variants from high-throughput sequencing data.
Nucleic Acids Res. 38, e164 (2010).

100. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the
search for new cancer-associated genes. Nature 499,
214–218 (2013).

101. Talevich, E., Shain, A. H., Botton, T. & Bastian, B. C. CNVkit:
genome-wide copy number detection and visualization from
targeted dna sequencing. PLoS Comput. Biol. 12, e1004873
(2016).

102. Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident
localization of the targets of focal somatic copy-number alteration
in human cancers. Genome Biol. 12, R41 (2011).

103. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general
purpose program for assigning sequence reads to genomic fea-
tures. Bioinformatics 30, 923–930 (2014).

104. Yoshihara, K. et al. Inferring tumour purity and stromal and
immune cell admixture from expression data. Nat. Commun. 4,
2612 (2013).

105. Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue
cellular heterogeneity landscape. Genome Biol. 18, 220 (2017).

106. Li,M. et al.MAP:model-based analysis of proteomicdata todetect
proteins with significant abundance changes. Cell Discov. 5,
40 (2019).

107. Ma, W. et al. DreamAI: algorithm for the imputation of proteomics
data. bioRxiv, https://doi.org/10.1101/2020.07.21.214205 (2020).

108. Wilkerson, M. D. & Hayes, D. N. ConsensusClusterPlus: a class
discovery tool with confidence assessments and item tracking.
Bioinformatics 26, 1572–1573 (2010).

109. Chen, H. et al. HyperChIP: identification of hypervariable signals
across ChIP-seq or ATAC-seq samples. Genome Biol. 23,
62 (2022).

110. Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z. & Zhang, B. WebGestalt
2019: gene set analysis toolkit with revamped UIs and APIs.
Nucleic Acids Res. 47, W199–W205 (2019).

111. Fang, Z., Liu, X. & Peltz, G. GSEApy: a comprehensive package for
performinggene set enrichment analysis in Python.Bioinformatics
39, btac757 (2023).

112. Wiredja, D. D., Koyuturk, M. & Chance, M. R. The KSEA app: a web-
based tool for kinase activity inference from quantitative phos-
phoproteomics. Bioinformatics 33, 3489–3491 (2017).

113. Chen, T. et al. The genome sequence archive family: toward
explosive data growth and diverse data types. Genom. Proteom.
Bioinform. 19, 578–583 (2021).

114. CNCB-NGDC Members and Partners Database resources of
the national genomics data center, China National Center for
bioinformation in 2022. Nucleic Acids Res. 50, D27–D38
(2022).

115. Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a
hub for mass spectrometry-based proteomics evidences. Nucleic
Acids Res. 50, D543–D552 (2022).

Acknowledgements
This study was supported by the National Key Research and Develop-
ment Program of China (2022YFA1302900 to H.Z.; 2020YFA0803203,
2019YFA0802102 to D.G.), the Shanghai Young Excellent Academic
Leader Program (20XD1424900 to H.Z.), the National Natural Science
Foundation of China (82173334 to L.W.; 32370705 to Z.S.; 81925029,
82230098, 32221002 to D.G.; 22425703 to H.Z.), the Strategic Priority

Article https://doi.org/10.1038/s41467-024-53830-0

Nature Communications |        (2024) 15:10114 22

https://doi.org/10.1101/2020.07.21.214205
www.nature.com/naturecommunications


Research Program of Chinese Academy of Sciences (XDB0850000 to
H.Z.; XDB38040100 to Z.S.), the CAS Project for Young Scientists in
Basic Research (YSBR-014 to D.G.) and the Shanghai Municipal Science
and Technology Major Projects. We would like to thank the Institutional
Technology Service Center of Shanghai Institute of Materia Medica for
all the technical support. This work was done under the auspices of the
US National Cancer Institute’s International Cancer Proteogenome
Consortium. CPTAC collaborates with international organizations/insti-
tutions to accelerate the understanding of themolecular basis of cancer
through the application of proteogenomics, standards development,
and publicly available datasets. The authors acknowledge the use of
Biorender for creating Supplementary Fig. 1a.

Author contributions
The project was conceived and supervised by D.G., L.W., Z.S., and H.Z.
Inclusion of patients, clinical sampling and sample prep was conducted
by J.Y., L.W., J.A., M.H., J.Zuo, G.Y. and N.L. Pathological evaluation and
IHC were performed by Y.S., J.J., J.Y., and L.W. Clinical sampling,
inclusion of patients and clinical data review for the validation cohort
were conducted by J.Y., L. Deng, J. Zeng and Y. Zhao. Genomics and
transcriptomics data generation was performed by J.Y. and X.Gui. MS
sample preparation, MS data generation and searching was conducted
byQ.L., Z.Y., J.Y., J.G., and Y.C. DIA proteomicsMS data was acquired by
J.Y., X.L. and X.D. Analysis of the sequencing data was performed by
X.Gui, Q.L., J.Y, X.Guo., S.Z., D.G., and Z.S. Proteogenomics analysis was
conductedbyX.Gui, Q.L., J.Y., Z.S. andH.Z. In vitro cell line experiments,
animal model and biological experiments were coordinated and per-
formed by J.Y., Y.Zou, K.W. and D.G. Resource and scientific advice was
provided by A.R., H.R., B.Z., P.W., L. Ding and Y.L. Funding support was
provided by H.Z., L.W., Z.S. and D.G. The proteogenomics data upload
was conducted by J.Y., Q.L., and Z.Y. The paper was written by J.Y.,
X.Gui, Y.Zou, Q.L., H.Z., and D.G.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-53830-0.

Correspondence and requests for materials should be addressed to
Hu Zhou, Zhen Shao, Lingying Wu or Daming Gao.

Peer review information Nature Communications thanks the anon-
ymous, reviewer(s) for their contribution to the peer review of this work.
A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024

1Department of GynecologicOncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical
Sciences and PekingUnionMedical College, Beijing, China. 2State Key Laboratory ofMolecular Oncology, National Cancer Center/National Clinical Research
Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. 3CAS Key Laboratory of
Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China. 4Key Laboratory of Multi-Cell Systems,
Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
5University of Chinese Academy of Sciences, Beijing, China. 6Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug
Research, Shanghai Institute ofMateriaMedica, Chinese Academy of Sciences, Shanghai, China. 7Department of Pathology, National Cancer Center/National
Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. 8Bruker
(Beijing) Scientific Technology Co., Ltd, Shanghai, China. 9Department of Pharmacology, Cancer Biology Institute, Yale University School of Medicine, West
Haven, CT, USA. 10Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 11Department of Molecular
and Human Genetics, Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA. 12Department of Medicine,
McDonnell Genome Institute, Siteman Cancer Center, Washington University, St. Louis, MI, USA. 13Office of Cancer Clinical Proteomics Research, National
Cancer Institute, National Institutes of Health, Rockville, MD, USA. 14School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced
Study, University of Chinese Academy of Sciences, Hangzhou, China. 15Key Laboratory of Systems Health Science of Zhejiang Province, School of Life
Science, Hangzhou Institute for AdvancedStudy,University ofChinese Academy of Sciences, Hangzhou, China. 16These authors contributed equally: Jing Yu,
Xiuqi Gui, Yunhao Zou, Qian Liu. e-mail: zhouhu@simm.ac.cn; shaozhen@sinh.ac.cn; wulingying@csco.org.cn; dgao@sibcb.ac.cn

Article https://doi.org/10.1038/s41467-024-53830-0

Nature Communications |        (2024) 15:10114 23

https://doi.org/10.1038/s41467-024-53830-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:zhouhu@simm.ac.cn
mailto:shaozhen@sinh.ac.cn
mailto:wulingying@csco.org.cn
mailto:dgao@sibcb.ac.cn
www.nature.com/naturecommunications

	A proteogenomic analysis of cervical cancer reveals therapeutic and biological insights
	Results
	Proteogenomic landscape of a Chinese CC cohort
	Multi-omics analysis of somatic copy number alternations
	Landscape of HPV-associated proteogenomic changes
	Proteomic alterations associated with tumorigenesis in CC
	Aberrate protein acetylation regulates CC progression
	Proteomic subgroups with distinct biological and clinical features
	Identification and validation of radioresponse-related biomarkers and risk-scoring model

	Discussion
	Methods
	Clinical sample of PUMC-CC cohort
	Cell line
	Proteogenomic workflow
	DNA/RNA extraction, WES, and RNA-seq
	MS methods
	Protein extraction and tryptic digestion

	TMT 16-plex labeling of peptides
	Peptide fractionation
	Phosphopeptide enrichment
	Acetylpeptide enrichment
	LC-MS/MS analysis for TMT-based proteomics
	DIA analysis
	Database searching of MS data
	Somatic mutation calling and filtering
	Analysis of significantly mutated genes
	CNAs analysis
	Comparisons of frequently mutated genes between cervical squamous cell carcinoma and adenocarcinoma
	RNA-seq data analysis
	HPV detection
	Inference of cell type score
	Proteomic data analysis
	Analysis of TMT quantitative proteomic data
	Analysis of DIA quantitative proteomic data
	Analysis of phosphoproteomic and acetylproteomic data

	Imputation of missing values
	Batch effect and data quality analysis of proteomic data
	Subgrouping analysis of transcriptomic, proteomic, phosphoproteomic and acetylproteomic data
	Differential protein expression/modification analysis between patient subgroups
	Association between proteomic subgroup and clinical outcome
	Tumor-NAT samples differential expression analysis
	Multi-omics data integration
	Analysis of mRNA-protein expression correlation
	Analysis of the cis/trans effect of CNAs

	Identification of CNG-Cis and CNL-Cis genes
	Analysis of the effects of arm-level CNAs
	Identification of radioresponse-related biomarkers
	Risk scoring model based on radioresponse-related biomarkers
	Identification of subgroup-specific kinases
	Pathway enrichment of HPV gene-associated proteins
	Subgrouping analysis based on HPV gene expression
	Functional experiments
	siRNA Interference

	Plasmids
	Cell transfection and lentiviral production
	Constructions of stable cell lines
	Cell proliferation assay
	Colony formation assay
	Cell cycle analysis
	IHC
	Immunoblot and immunoprecipitation
	qRT-PCR
	Xenograft tumorigenesis assay
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




